

    
      Navigation

      
        	
          index

        	
          next |

        	MSU Web Dev 1.0 documentation 
 
      

    


    
      
          
            
  
  
Welcome to the Web Dev class (2014)

Lecture/lab: Tu/Th 3-4:20pm, 55 Union Bldg

Instructor: C. Titus Brown, ctb@msu.edu, BPS 2228(c)

TA: Leigh Sheneman, leighs@msu.edu, BPS 2228.

Office hours will be in 3353 Egr at 9pm on Wednesday evenings, unless
otherwise stated.

Objectives:

In this course, you will learn how the Web works by working on an HTTP
server, a backend Web app (including database and HTML generation),
and a front-end JavaScript interface. As part of this we will discuss
concepts in client-server and peer-to-peer architectures and how all
of this technology works “under the hood” on today’s Internet.  We’ll
also discuss issues and approaches to developing software with an eye
to maintainability, and learn about the practical separation of
concerns in Web application stacks, from browser through server. A key
part of this course will be the use of git and github. This course
will be programming intensive and you should expect to either know
Python or be prepared to learn it fairly well on your own.

Read more in the syllabus

Make sure you’re on the mailing list [http://lists.idyll.org/listinfo/cse491-spring-2014].

Class resources:



	Blog post assignments

	Basic Instructions for Git and Github

	Using virtualenv





Class pages and HWs, by day:



	Day 30: Thursday, April 24, 2014

	Day 29: Tuesday, April 22, 2014

	Homework 13
	After handing things in:





	Day 28: Thursday, April 17, 2014
	In class exercise: git merging

	Resolving merge conflicts





	Day 27: Tuesday, April 15, 2014

	Homework 12
	After handing things in:





	Day 25: Tuesday, April 8, 2014

	Homework 11
	After handing things in:





	Day 24: Thursday, April 3, 2014
	In-class exercises





	Day 23: Tuesday, April 1, 2014

	Homework 10
	After handing things in:





	Day 22: Thursday, Mar 27th, 2014

	Day 21: Tuesday, Mar 25th, 2014

	Homework 9
	After handing things in:





	Day 20: Thursday, Mar 20th, 2014

	Day 19: Tuesday, Mar 18th, 2014

	Homework 8
	After handing things in:





	Day 18: Thursday, Mar 13th, 2014

	Day 17: Tuesday, Mar 11th, 2014

	Day 16: Thursday, Feb 27th, 2014

	Day 15: Tuesday, Feb 25th, 2014
	Continuous Integration





	Homework 7

	Homework 6

	Day 13: Tuesday, Feb 18th, 2014
	An actual WSGI application





	Homework 5

	Day 11: Tuesday, Feb 11th, 2014
	Pull requests and doing code reviews





	Day 10: Thursday, Feb 6th, 2014
	Code review checklist





	Day 9: Tuesday, Feb 4th, 2014
	Fun with functions and callables





	Homework 4

	Day 8: Thursday, January 30th, 2014
	Computing and displaying code coverage stats

	List of repositories





	Day 7: Tuesday, January 28th, 2014

	Homework 3

	Day 6: Thursday, January 23rd, 2014
	Code review HOWTO v2

	Play with static HTML on arctic

	List of repositories





	Day 5: Tuesday, January 21st, 2014

	Homework 2

	Day 4: Thursday, January 16th, 2014

	Day 3: Tuesday, January 14th, 2014

	Day 2: Thursday, January 9th, 2014

	Homework 1








Indices and tables


	Index

	Module Index

	Search Page











          

      

      

    



    
         Copyright 2013, C. Titus Brown.
      Created using Sphinx 1.2.2.
    





      Edit this document!


      
        This file can be edited directly through the Web. Anyone can
        update and fix errors in this document with few clicks --
        no downloads needed.
      

      

        	
          Go to
        
          Welcome to the Web Dev class (2014)
         on GitHub.
      


        	
        Edit files using GitHub's text editor in your web browser (see the 'Edit' tab on the top right of the file)
      


      	
        Fill in the Commit message text box at the bottom of the page describing why
        you made the changes. Press the Propose file change button next to it when done.
      


      	
        Then click Send a pull request.
      


      	
        Your changes are now queued for review under the project's Pull requests tab on GitHub!
      

      


      
        For an introduction to the documentation format please see the reST primer.
      


  
  
    
    
    Blog post assignments
    
    

    











  
  

    
      Navigation

      
        	
          index

        	
          next |

        	
          previous |

        	MSU Web Dev 1.0 documentation 
 
      

    


    
      
          
            
  
  
Blog post assignments

Up to two students may sign up to write a blog post about each class
day, and each student may sign up for two blog posts total.  Each blog
post will count towards half a project at the end of the class (i.e.
2 blog posts will satisfy 10% of your grade).

To sign up for a blog post, go to
https://github.com/ged-lab/msu-cse491-2013/, fork the repo, edit this
document, and submit a pull request to me to merge it back in.


Content

Blog posts should discuss most of the following in ~5-7 paragraphs/400
words minimum:



	An outline of what was discussed in class;

	Relevant links that were brought up, and how/why they’re relevant;

	Your thoughts (including agreements or disagreements) on any
opinions expressed by the instructor or by other students.






You can also add:



	Other links on related topics that you found interesting;

	Additional thoughts that you wanted to bring;

	Relevant personal experiences.









Class days


	[ leflerja ] 4. 1/16

	[ ] 5. 1/21

	[ ] 6. 1/23

	[ ] 7. 1/28

	[ ] 8. 1/30

	[ ] 9. 2/4

	[ ] 10. 2/6

	[ ] 11. 2/11

	[ leflerja ] 12. 2/13 - Rich Enbody speaks on security

	[ ] 13. 2/18

	[ ] 14. 2/20

	[ ] 15. 2/25

	[ ] 16. 2/27

	[ ] 17. 3/11

	[ ] 18. 3/13

	[ ] 19. 3/18

	[ ] 20. 3/20

	[ ] 21. 3/25

	[ ] 23. 3/27

	[ ] 24. 4/1

	[ ] 25. 4/3

	[ ] 26. 4/8

	[ ] 27. 4/10 -> CTB NOT IN TOWN/CLASS CANCELLED?

	[ ] 28. 4/15

	[ ] 29. 4/17

	[ ] 30. 4/22













          

      

      

    



    
         Copyright 2013, C. Titus Brown.
      Created using Sphinx 1.2.2.
    





      Edit this document!


      
        This file can be edited directly through the Web. Anyone can
        update and fix errors in this document with few clicks --
        no downloads needed.
      

      

        	
          Go to
        
          Blog post assignments
         on GitHub.
      


        	
        Edit files using GitHub's text editor in your web browser (see the 'Edit' tab on the top right of the file)
      


      	
        Fill in the Commit message text box at the bottom of the page describing why
        you made the changes. Press the Propose file change button next to it when done.
      


      	
        Then click Send a pull request.
      


      	
        Your changes are now queued for review under the project's Pull requests tab on GitHub!
      

      


      
        For an introduction to the documentation format please see the reST primer.
      


  
  
    
    
    Basic Instructions for Git and Github
    
    

    











  
  

    
      Navigation

      
        	
          index

        	
          next |

        	
          previous |

        	MSU Web Dev 1.0 documentation 
 
      

    


    
      
          
            
  
  
Basic Instructions for Git and Github

Links:


	An interactive git tutorial, ‘try git’ [http://try.github.io/levels/1/challenges/1]

	Pro Git (the book) [http://git-scm.com/book]

	A tutorial introduction to git [http://git-scm.com/docs/gittutorial]

	Top 10 Git tutorials for beginners [http://sixrevisions.com/resources/git-tutorials-beginners/]



See also this video that Titus made about merging [http://www.youtube.com/watch?v=5G9T_LXii98]




1. Cloning a repository.

Cloning a repository (from github or anywhere else) makes a local copy
of the contents of that repository.

To clone a repository, locate your HTTPS repository URL; it should look
something like this:

https://github.com/ctb/cse491-serverz.git





where ‘ctb’ is your username instead, and ‘cse491-serverz’ is whatever
repository you’re trying to clone locally.

note: it must end in .git.

Then do ‘git clone $URL’, replacing $URL with the repository URL.
This will create a directory named after the repository.  You can
rename this directory to whatever you want, move it around, etc; it’s
entirely self-contained.

You can now edit files and do whatever you want in this repo.




2. Committing changes

Do a ‘git status’ to see what git thinks has been changed.

‘git diff’ will show the differences between the last commit and
the current changes.

The command:

git commit -am "my changes"





will commit all the changes to the repository.  A ‘git status’ immediately
afterwards should show no changes.

‘git log’ will show you a list of commits.




3. Pushing changes to github

The command:

git push origin master





will push all changes in the master branch (the default one) to the
remote location called ‘origin’, which, by default, is wherever you
cloned things from.

Here, ‘master’ is the branch.  So if you have a branch, say, ‘other’, you
can do:

git push origin other:other





You can use ‘git remote’ to add, remove, edit, and otherwise mess with your
various location aliases (e.g. ‘origin’).




4. Creating new branches, and switching branches

To create a new branch called ‘other’, you can do:

git checkout -b other





This will copy your current branch into a new branch called ‘other’.

You can switch to an existing branch by doing:

git checkout other





and you can see existing branches with:

git branch








5. Pushing changes to github with different branch names.

There’s no reason you have to use the same branch names in your
local repo as in your github repo.  For example, if you do:

git push origin master:other





this will push the contents of your local master branch into the
remote branch named ‘other’.











          

      

      

    



    
         Copyright 2013, C. Titus Brown.
      Created using Sphinx 1.2.2.
    





      Edit this document!


      
        This file can be edited directly through the Web. Anyone can
        update and fix errors in this document with few clicks --
        no downloads needed.
      

      

        	
          Go to
        
          Basic Instructions for Git and Github
         on GitHub.
      


        	
        Edit files using GitHub's text editor in your web browser (see the 'Edit' tab on the top right of the file)
      


      	
        Fill in the Commit message text box at the bottom of the page describing why
        you made the changes. Press the Propose file change button next to it when done.
      


      	
        Then click Send a pull request.
      


      	
        Your changes are now queued for review under the project's Pull requests tab on GitHub!
      

      


      
        For an introduction to the documentation format please see the reST primer.
      


  
  
    
    
    Using virtualenv
    
    

    











  
  

    
      Navigation

      
        	
          index

        	
          next |

        	
          previous |

        	MSU Web Dev 1.0 documentation 
 
      

    


    
      
          
            
  
  
Using virtualenv

We’re using virtualenv [http://www.virtualenv.org/en/latest/] to
manage software installs etc.  I’ll keep this page up to date with
packages that need to be installed for HWs and in-class exercises.


Note

There’s no harm in deleting and recreating your virtualenv.  But
you can’t move them around; they contain hard-coded paths.




Creating a virtualenv

Pick a location (a directory that does not yet exist) and type:

python2.7 -m virtualenv $location





This will create a new virtual environment in $location.  For example,

rm -fr ~/cse491.env
python2.7 -m virtualenv ~/cse491.env





will create a virtualenv in the directory ‘cse491.env’ in your home directory.

(You only need to create a virtualenv once.)




Activating your virtualenv

Every time you log in or open a new shell window, you need to activate the
virtualenv so your Python knows about it.  To do this in csh (the default
shell), type:

source $location/bin/activate.csh





In bash, do:

. $location/bin/activate





So, for example, in csh, you would do

source ~/cse491.env/bin/activate.csh








Installing software in the virtualenv

You will need nose, requests, and coverage; you only need to install these
once for each virtualenv.

pip install -U nose
pip install -U requests
pip install -U coverage
pip install -U jinja2
pip install -U twill
pip install http://quixote.ca/releases/Quixote-2.8.tar.gz
source ~/cse491.env/bin/activate.csh















          

      

      

    



    
         Copyright 2013, C. Titus Brown.
      Created using Sphinx 1.2.2.
    





      Edit this document!


      
        This file can be edited directly through the Web. Anyone can
        update and fix errors in this document with few clicks --
        no downloads needed.
      

      

        	
          Go to
        
          Using virtualenv
         on GitHub.
      


        	
        Edit files using GitHub's text editor in your web browser (see the 'Edit' tab on the top right of the file)
      


      	
        Fill in the Commit message text box at the bottom of the page describing why
        you made the changes. Press the Propose file change button next to it when done.
      


      	
        Then click Send a pull request.
      


      	
        Your changes are now queued for review under the project's Pull requests tab on GitHub!
      

      


      
        For an introduction to the documentation format please see the reST primer.
      


  
  
    
    
    Day 30: Thursday, April 24, 2014
    
    

    











  
  

    
      Navigation

      
        	
          index

        	
          next |

        	
          previous |

        	MSU Web Dev 1.0 documentation 
 
      

    


    
      
          
            
  
  
Day 30: Thursday, April 24, 2014


	Reading: http://www.jeffknupp.com/blog/2014/03/03/what-is-a-web-framework/

	Quizlet [https://docs.google.com/a/msu.edu/forms/d/19EJ91auZi_B4fNvSAW5vnjdrs89akY4sMc28MkFQ_lo/viewform]

	Presentation by CTB [https://docs.google.com/presentation/d/1zsN_xOc4Ppv8F1lxdGZH-Muhv6q_8FTQ_MyvhjOT5TA/edit]

	Presentation by Grig Gheorghiu, NastyGal [http://nastygal.com]






	Topics touched on with code/HW:

	
	version control

	git, github, pull requests, and merging

	code review

	open protocols and distributed systems

	automated testing

	HTTP

	WSGI

	unit testing

	Python modules

	Quixote

	Continuous Integration

	JavaScript and JQuery

	twill and HTTP testing

	AJAX

	Cookies; sqlite

	async vs threading

	transactions & synchronization





	Reading:

	
	Xanadu and the Web

	Deep Web: hidden bits of the Web

	high quality software engineering

	mock objects

	Tor

	technical debt

	prediction markets

	Web 2.0

	Scaling Web sites

	DevOps

	SSL and certificates

	NodeJS

	Bitcoin















          

      

      

    



    
         Copyright 2013, C. Titus Brown.
      Created using Sphinx 1.2.2.
    





      Edit this document!


      
        This file can be edited directly through the Web. Anyone can
        update and fix errors in this document with few clicks --
        no downloads needed.
      

      

        	
          Go to
        
          Day 30: Thursday, April 24, 2014
         on GitHub.
      


        	
        Edit files using GitHub's text editor in your web browser (see the 'Edit' tab on the top right of the file)
      


      	
        Fill in the Commit message text box at the bottom of the page describing why
        you made the changes. Press the Propose file change button next to it when done.
      


      	
        Then click Send a pull request.
      


      	
        Your changes are now queued for review under the project's Pull requests tab on GitHub!
      

      


      
        For an introduction to the documentation format please see the reST primer.
      


  
  
    
    
    Day 29: Tuesday, April 22, 2014
    
    

    











  
  

    
      Navigation

      
        	
          index

        	
          next |

        	
          previous |

        	MSU Web Dev 1.0 documentation 
 
      

    


    
      
          
            
  
  
Day 29: Tuesday, April 22, 2014


	Read How the Bitcoin protocol actually works [http://www.michaelnielsen.org/ddi/how-the-bitcoin-protocol-actually-works/].

Additional reading: The future of the blockchain [http://www.businessinsider.com/the-future-of-the-blockchain-2014-4]; Bitcoin tutorial [https://docs.google.com/presentation/d/1PDv5emVtrkTQgUg7yjQUNEeK972Bh40nT0BI0kLSWzc/edit#slide=id.p]



	Quiz. [https://docs.google.com/forms/d/11iF_g0ALq0P8VMV2NkOkX8-LjvPgYfGOjNnEmQKHoy8/viewform]



	Bitcoin discussion points


	tries to work well in an imperfect world: attackers, latency

	notice how synchronization is a hard problem?

	asymmetry in computing: used for validation, verification

	random algorithms used to break ties (blockchain): look up skip lists [http://en.wikipedia.org/wiki/Skip_list], my PyCon talk last year [https://us.pycon.org/2013/schedule/presentation/53/] (video) [https://www.youtube.com/watch?v=jKBwGlYb13w]



Is Bitcoin a plot by the NSA? [http://realcurrencies.wordpress.com/2013/06/21/is-the-national-security-agency-behind-bitcoin/]

My theory: is Bitcoin about testing the reliability of certain cryptographic
operations?



	Contention, locking, and ACID.

See: Atomicity, Consistency, Isolation, Durability (ACID) [http://en.wikipedia.org/wiki/ACID].  Note, locking is expensive.


	read Transactions [http://www.postgresql.org/docs/8.3/static/tutorial-transactions.html], through the 5th paragraph (“Another important property...”)



	read Transaction isolation [http://www.postgresql.org/docs/9.1/static/transaction-iso.html], up to 13.2.1 (through “To set the transaction isolation level...”)

(Presentation) [https://docs.google.com/presentation/d/1QPZ8cpY3QKGJJnDKxkuDXTkWUtv1B4Udh1mOKgO5m5w/edit#slide=id.p13]



	for each transaction isolation level, list out one or more
applications for which those guarantees are either probably or
certainly sufficient for reliable performance (think worst case
for “certainly”!)

In table-sized groups of 4-8, please list out 1 or more
applications for each isolation level, annotated as “probably”
or “certainly” sufficient.  (List them out here) [https://docs.google.com/document/d/1asH8g_iD0kH_Axtg_5oU1tKGwBFA6mPNirROYqc9kEQ/edit#]







	SIRS forms.













          

      

      

    



    
         Copyright 2013, C. Titus Brown.
      Created using Sphinx 1.2.2.
    





      Edit this document!


      
        This file can be edited directly through the Web. Anyone can
        update and fix errors in this document with few clicks --
        no downloads needed.
      

      

        	
          Go to
        
          Day 29: Tuesday, April 22, 2014
         on GitHub.
      


        	
        Edit files using GitHub's text editor in your web browser (see the 'Edit' tab on the top right of the file)
      


      	
        Fill in the Commit message text box at the bottom of the page describing why
        you made the changes. Press the Propose file change button next to it when done.
      


      	
        Then click Send a pull request.
      


      	
        Your changes are now queued for review under the project's Pull requests tab on GitHub!
      

      


      
        For an introduction to the documentation format please see the reST primer.
      


  
  
    
    
    Homework 13
    
    

    











  
  

    
      Navigation

      
        	
          index

        	
          next |

        	
          previous |

        	MSU Web Dev 1.0 documentation 
 
      

    


    
      
          
            
  
  
Homework 13

Due by noon on Thursday, Apr 24th.

Note: you will be asked to do 50 total points of projects for this class.


	Merge hw12 into your master.  Please don’t delete the ‘hw12’ branch.

Hand in this homework on branch ‘hw13’ on your github account, and
set up a pull request between hw13 and your master branch.  Don’t
merge it, just set up the PR.



	Finish implementing 50 points worth of projects total.

Make sure to explain what you did in the ChangeLog, in detail,
including instructions on how to execute things.  Note that all
previous project features should continue working with the new
project features – so, if you implemented logins and cookies and
now want to do SQL persistence, you should persist your login and
cookie information in SQL as well as the images.

As per the syllabus, you are allowed to work collaboratively but
everything you hand in must have your own name on the commits.  The
only exception to this is if you are working with someone else’s
project, but the sum of the project points must be N*10 (if you work
in a group with N=2 people, each person must implement 10 pts worth
of projects).  Note that you are also responsible for making sure
the other persons’ code doesn’t break your code.

If you run into technical difficulties that can’t be resolved, you
can ask (via e-mail) for an extension until the following Thursday.
In your e-mail write in a few sentences what problem you’re running
into, what you’ve tried in terms of debugging it, and what you think
the problem is.  If I grant you an extension I will find someone
to help you via code review/pull request on github.  Extensions
may not be granted, however, so make sure you’re really stuck before
asking for one...






After handing things in:

Do a clean clone of your repo and make sure that all the tests pass
and that all your functionality works on the clean clone, on arctic.

That is, do:

git clone https://github.com/ctb/cse491-serverz -b hw13 test-hw13
cd test-hw13
(run stuff)





Using ChangeLog, please explain your project choice and implementation
in sufficient detail to let someone else (me) who is _not_ psychic
understand what you’ve done and run it.  Test your code and any
instructions using a clean checkout.  I mean it.











          

      

      

    



    
         Copyright 2013, C. Titus Brown.
      Created using Sphinx 1.2.2.
    





      Edit this document!


      
        This file can be edited directly through the Web. Anyone can
        update and fix errors in this document with few clicks --
        no downloads needed.
      

      

        	
          Go to
        
          Homework 13
         on GitHub.
      


        	
        Edit files using GitHub's text editor in your web browser (see the 'Edit' tab on the top right of the file)
      


      	
        Fill in the Commit message text box at the bottom of the page describing why
        you made the changes. Press the Propose file change button next to it when done.
      


      	
        Then click Send a pull request.
      


      	
        Your changes are now queued for review under the project's Pull requests tab on GitHub!
      

      


      
        For an introduction to the documentation format please see the reST primer.
      


  
  
    
    
    Day 28: Thursday, April 17, 2014
    
    

    











  
  

    
      Navigation

      
        	
          index

        	
          next |

        	
          previous |

        	MSU Web Dev 1.0 documentation 
 
      

    


    
      
          
            
  
  
Day 28: Thursday, April 17, 2014


	Read http://debuggable.com/posts/understanding-node-js:4bd98440-45e4-4a9a-8ef7-0f7ecbdd56cb.  See also http://www.nodebeginner.org/#building-the-application-stack.

	Quiz on reading [https://docs.google.com/a/msu.edu/forms/d/1XaGaCdcF2JoOFofiAzx9ury7Oj8YKjRzcUtMBm1N5J0/viewform]

	Discussion.

	Next week’s schedule: Tuesday (XSS and Selenium; DB; SIRS);
Thursday (NastyGal [http://en.wikipedia.org/wiki/Nasty_Gal], Grig Gheorghiu will speak via teleconf)

	This week’s homework will be:
(a) finish out project points by Th;
(b) fix stuff that I find in your homework, by following Th (two weeks).

	No class or final during final’s week!

	In class exercise on git merging.

	git merging prez [https://docs.google.com/presentation/d/1kiA2x-HMy0cybzx_r8yt_ZWS9aE_hQuJDRjV_t_AyNY/edit#slide=id.p13]




In class exercise: git merging

Brief description: check out cse491-mergez
(https://github.com/ctb/cse491-mergez) and merge the fix_stddev and
listcomp branches into master.

Longer description:


This code implements the calculation of standard deviation for a
discrete random variable (see the Wikipedia page [http://en.wikipedia.org/wiki/Standard_deviation#Discrete_random_variable]), with values taken from a single column text file.

Two separate improvements have been made to the codebase.  Please merge
them into a single branch.




Note: Be sure to take the time to look through the project and repository!

Workflow:


	Clone the repository:

git clone https://github.com/ctb/cse491-mergez.git







	Get all of the branches:

cd cse491-mergez
git fetch origin







	Make sure you’re on master:

git checkout master







	Get a list of branches, including remote ones:

git branch -r







	Make a new merge branch to do the merge on:

git checkout -b try_merge







	Merge in one of the two feature branches:

git merge origin/listcomp





and resolve merge conflicts, if any (see below).



	Merge in the other feature branch:

git merge origin/fix_stddev





and resolve merge conflicts, if any (see below).



	Go back to master.

git checkout master







	Merge the ‘merge’ branch in:

git merge try_merge







	(If you have time) Fork https://github.com/ctb/cse491-mergez, push
your master branch to your own copy, and set up a pull request
from your master to my master.



	Bask in the warm glow of success.








Resolving merge conflicts

When git merge encounters syntactically unmergeable code – where one change
directly conflicts with the other branch – it will annotate the code with
both versions:

<<<< HEAD

 (one version of conflicting code)

====

 (other version of conflicting code)

>>>> other





To clear this conflict, you need to (a) edit the code so it is
syntactically and semantically correct, which means removing the
<<<< etc annotations; and (b) do a ‘git add filename’ for each
file you fixed, plus a ‘git commit’ to commit the changes.  Then
a ‘git status’ should report no conflicted files.











          

      

      

    



    
         Copyright 2013, C. Titus Brown.
      Created using Sphinx 1.2.2.
    





      Edit this document!


      
        This file can be edited directly through the Web. Anyone can
        update and fix errors in this document with few clicks --
        no downloads needed.
      

      

        	
          Go to
        
          Day 28: Thursday, April 17, 2014
         on GitHub.
      


        	
        Edit files using GitHub's text editor in your web browser (see the 'Edit' tab on the top right of the file)
      


      	
        Fill in the Commit message text box at the bottom of the page describing why
        you made the changes. Press the Propose file change button next to it when done.
      


      	
        Then click Send a pull request.
      


      	
        Your changes are now queued for review under the project's Pull requests tab on GitHub!
      

      


      
        For an introduction to the documentation format please see the reST primer.
      


  
  
    
    
    Day 27: Tuesday, April 15, 2014
    
    

    











  
  

    
      Navigation

      
        	
          index

        	
          next |

        	
          previous |

        	MSU Web Dev 1.0 documentation 
 
      

    


    
      
          
            
  
  
Day 27: Tuesday, April 15, 2014


	Read http://en.wikipedia.org/wiki/Asynchronous_I/O





On branch day27, I’ve changed image.py (link) [https://github.com/ctb/cse491-serverz/blob/e7d764c23d432f4d8cd96384f788dc27167d0421/imageapp/image.py] to do SQLite saving/loading of images.

Look at the changes to server.py on day27-threading (link) [https://github.com/ctb/cse491-serverz/commit/99d75eb7f6573957d1b8c6624075e77a4d3a4271]
and day27-async (link) [https://github.com/ctb/cse491-serverz/commit/a6b65dd37b340afa03e0a0cb2ad8012fa7f39dc6].

Question – does the ‘add_image’ function (lines 35-54) in image.py [https://github.com/ctb/cse491-serverz/blob/e7d764c23d432f4d8cd96384f788dc27167d0421/imageapp/image.py]
need to be protected from concurrent execution in (a) threading and (b) async?

If (a) threading is YES and (b) async is YES, choose pink.

If (a) threading is YES and (b) async is NO, choose green.

If (a) threading is NO and (b) async is YES, choose yellow.

If (a) threading is NO and (b) async is NO, choose blue.











          

      

      

    



    
         Copyright 2013, C. Titus Brown.
      Created using Sphinx 1.2.2.
    





      Edit this document!


      
        This file can be edited directly through the Web. Anyone can
        update and fix errors in this document with few clicks --
        no downloads needed.
      

      

        	
          Go to
        
          Day 27: Tuesday, April 15, 2014
         on GitHub.
      


        	
        Edit files using GitHub's text editor in your web browser (see the 'Edit' tab on the top right of the file)
      


      	
        Fill in the Commit message text box at the bottom of the page describing why
        you made the changes. Press the Propose file change button next to it when done.
      


      	
        Then click Send a pull request.
      


      	
        Your changes are now queued for review under the project's Pull requests tab on GitHub!
      

      


      
        For an introduction to the documentation format please see the reST primer.
      


  
  
    
    
    Homework 12
    
    

    











  
  

    
      Navigation

      
        	
          index

        	
          next |

        	
          previous |

        	MSU Web Dev 1.0 documentation 
 
      

    


    
      
          
            
  
  
Homework 12

Due by noon on Thursday, Apr 17th.

Note: you will be asked to do 50 total points of projects for this class.


	Merge hw11 into your master.  Please don’t delete the ‘hw11’ branch.

Hand in this homework on branch ‘hw12’ on your github account, and
set up a pull request between hw12 and your master branch.  Don’t
merge it, just set up the PR.



	Pick 10 points worth of projects from Projects and implement.

Make sure to explain what you did in the ChangeLog, in detail,
including instructions on how to execute things.  Note that all
previous project features should continue working with the new
project features – so, if you implemented logins and cookies and
now want to do SQL persistence, you should persist your login and
cookie information in SQL as well as the images.

As per the syllabus, you are allowed to work collaboratively but
everything you hand in must have your own name on the commits.  The
only exception to this is if you are working with someone else’s
project, but the sum of the project points must be N*10 (if you work
in a group with N=2 people, each person must implement 10 pts worth
of projects).  Note that you are also responsible for making sure
the other persons’ code doesn’t break your code.

If you run into technical difficulties that can’t be resolved, you
can ask (via e-mail) for an extension until the following Thursday.
In your e-mail write in a few sentences what problem you’re running
into, what you’ve tried in terms of debugging it, and what you think
the problem is.  If I grant you an extension I will find someone
to help you via code review/pull request on github.  Extensions
may not be granted, however, so make sure you’re really stuck before
asking for one...






After handing things in:

Do a clean clone of your repo and make sure that all the tests pass
and that all your functionality works on the clean clone, on arctic.

That is, do:

git clone https://github.com/ctb/cse491-serverz -b hw12 test-hw12
cd test-hw12
(run stuff)





Using ChangeLog, please explain your project choice and implementation
in sufficient detail to let someone else (me) who is _not_ psychic
understand what you’ve done and run it.  Test your code and any
instructions using a clean checkout.  I mean it.











          

      

      

    



    
         Copyright 2013, C. Titus Brown.
      Created using Sphinx 1.2.2.
    





      Edit this document!


      
        This file can be edited directly through the Web. Anyone can
        update and fix errors in this document with few clicks --
        no downloads needed.
      

      

        	
          Go to
        
          Homework 12
         on GitHub.
      


        	
        Edit files using GitHub's text editor in your web browser (see the 'Edit' tab on the top right of the file)
      


      	
        Fill in the Commit message text box at the bottom of the page describing why
        you made the changes. Press the Propose file change button next to it when done.
      


      	
        Then click Send a pull request.
      


      	
        Your changes are now queued for review under the project's Pull requests tab on GitHub!
      

      


      
        For an introduction to the documentation format please see the reST primer.
      


  
  
    
    
    Day 25: Tuesday, April 8, 2014
    
    

    











  
  

    
      Navigation

      
        	
          index

        	
          next |

        	
          previous |

        	MSU Web Dev 1.0 documentation 
 
      

    


    
      
          
            
  
  
Day 25: Tuesday, April 8, 2014


	Read https://httpd.apache.org/docs/2.2/ssl/ssl_intro.html and
http://blog.hartleybrody.com/https-certificates/



	Fill out the quiz [https://docs.google.com/a/msu.edu/forms/d/1gCxIzWO9atp6787FFyBFrxDSuK-vMOuX6BAhEQ4LKPs/viewform]



	Discussion.



	Git exercises from Day 24: Thursday, April 3, 2014.



	Other stuff

SQL loading & Python modules.



	See setup() in imageapp/__init__.py (link) [https://github.com/ctb/cse491-serverz/blob/day24-ice/imageapp/__init__.py#L14]; this contains stuff that you only run once an app. It’s in a function so you can choose to run it or not to run it (e.g. for tests)

	See imageapp/image.py (link) [https://github.com/ctb/cse491-serverz/blob/day24-ice/imageapp/image.py].  The ‘images = {}’ will be run on import, no matter what you do.  There’s no way to disable it, in particular.



tl;dr? Almost always put code in a function.

Q: where should you put database creation/data model definition code? (See sqlite/create.py (link on day23 branch) [https://github.com/ctb/cse491-serverz/blob/day23/sqlite/create.py]




More git reading: http://who-t.blogspot.com/2014/03/using-git-next-level.html

A quest for understanding Web stuff: http://jakearchibald.github.io/request-quest/













          

      

      

    



    
         Copyright 2013, C. Titus Brown.
      Created using Sphinx 1.2.2.
    





      Edit this document!


      
        This file can be edited directly through the Web. Anyone can
        update and fix errors in this document with few clicks --
        no downloads needed.
      

      

        	
          Go to
        
          Day 25: Tuesday, April 8, 2014
         on GitHub.
      


        	
        Edit files using GitHub's text editor in your web browser (see the 'Edit' tab on the top right of the file)
      


      	
        Fill in the Commit message text box at the bottom of the page describing why
        you made the changes. Press the Propose file change button next to it when done.
      


      	
        Then click Send a pull request.
      


      	
        Your changes are now queued for review under the project's Pull requests tab on GitHub!
      

      


      
        For an introduction to the documentation format please see the reST primer.
      


  
  
    
    
    Homework 11
    
    

    











  
  

    
      Navigation

      
        	
          index

        	
          next |

        	
          previous |

        	MSU Web Dev 1.0 documentation 
 
      

    


    
      
          
            
  
  
Homework 11

Due by noon on Thursday, Apr 10th.

Note: you will be asked to do 50 total points of projects for this class.


	Merge hw10 into your master.  Please don’t delete the ‘hw10’ branch.

Hand in this homework on branch ‘hw11’ on your github account, and
set up a pull request between hw11 and your master branch.  Don’t
merge it, just set up the PR.



	Make the cookie app from Day 23: Tuesday, April 1, 2014 work in your server.py, when
run with ‘-A cookie’.  Note in particular that this means you need
proper HTTP_COOKIE handling in your WSGI server...

In particular, try out the twill test on the day23 branch of
cse491-serverz works; see the test script here [https://github.com/ctb/cse491-serverz/blob/day23/twill-tests/cookieapp.twill].
You can run it like so:

twill-sh -u http://hostname:port/ twill-tests/cookieapp.twill







	Change imageapp to store its images in a SQL database.  Feel free
to swipe the sqlite3 code from Day 23: Tuesday, April 1, 2014.  Make sure to separate
database creation code from image loading code, and execute the
database creation code only once (or, when needed).  Put in
instructions on how to do this if it’s not automatically figured out...

Two notes:


	This is just about the images, nothing else;

	If you’ve already done any of the data persistence projects, you’re good;
just tell me that in the ChangeLog for hw11.





	Pick 10 points worth of projects from Projects and implement.

Make sure to explain what you did in the ChangeLog, in detail,
including instructions on how to execute things.  Note that all
previous project features should continue working with the new
project features – so, if you implemented logins and cookies and
now want to do SQL persistence, you should persist your login and
cookie information in SQL as well as the images.

As per the syllabus, you are allowed to work collaboratively but
everything you hand in must have your own name on the commits.  The
only exception to this is if you are working with someone else’s
project, but the sum of the project points must be N*10 (if you work
in a group with N=2 people, each person must implement 10 pts worth
of projects).  Note that you are also responsible for making sure
the other persons’ code doesn’t break your code.

If you run into technical difficulties that can’t be resolved, you
can ask (via e-mail) for an extension until the following Thursday.
In your e-mail write in a few sentences what problem you’re running
into, what you’ve tried in terms of debugging it, and what you think
the problem is.  If I grant you an extension I will find someone
to help you via code review/pull request on github.  Extensions
may not be granted, however, so make sure you’re really stuck before
asking for one...






After handing things in:

Do a clean clone of your repo and make sure that all the tests pass
and that all your functionality works on the clean clone, on arctic.

That is, do:

git clone https://github.com/ctb/cse491-serverz -b hw11 test-hw11
cd test-hw11
(check stuff over)





Using ChangeLog, please explain your project choice and implementation
in sufficient detail to let someone else (me) who is _not_ psychic
understand what you’ve done and run it.  Test your code and any
instructions using a clean checkout.  I mean it.











          

      

      

    



    
         Copyright 2013, C. Titus Brown.
      Created using Sphinx 1.2.2.
    





      Edit this document!


      
        This file can be edited directly through the Web. Anyone can
        update and fix errors in this document with few clicks --
        no downloads needed.
      

      

        	
          Go to
        
          Homework 11
         on GitHub.
      


        	
        Edit files using GitHub's text editor in your web browser (see the 'Edit' tab on the top right of the file)
      


      	
        Fill in the Commit message text box at the bottom of the page describing why
        you made the changes. Press the Propose file change button next to it when done.
      


      	
        Then click Send a pull request.
      


      	
        Your changes are now queued for review under the project's Pull requests tab on GitHub!
      

      


      
        For an introduction to the documentation format please see the reST primer.
      


  
  
    
    
    Day 24: Thursday, April 3, 2014
    
    

    











  
  

    
      Navigation

      
        	
          index

        	
          next |

        	
          previous |

        	MSU Web Dev 1.0 documentation 
 
      

    


    
      
          
            
  
  
Day 24: Thursday, April 3, 2014


	Read http://www.aosabook.org/en/integration.html

	Fill out the quiz [https://docs.google.com/a/msu.edu/forms/d/1fM7YUDia7xyB0Ge42BmuKUB1y_0-G_8AnOrWcnGpP-c/viewform]

	Discussion.

	In-class exercises (see below).






In-class exercises


	In pairs, look at http://jobs.msu.edu.  Try searching for two different
job postings (4698 and 7617, for example).  Can you communicate these
to your partner via an e-mailed URL? Try sending each other the URL of
the different job.

What is the mechanism the site is using to keep track of what job you’re
looking at?  What’s a better way?



	Check out branch ‘day24-ice’ of ctb’s cse491-serverz, provided by a student:

git clone https://github.com/ctb/cse491-serverz.git day24-ice -b day24-ice





and run the imageapp, ‘cd day24-ice; python server.py -A image’.

In pairs, have one person log in to the same server as
‘user1’/’user1’ and the other as ‘user2’/’user2’.  Now check to see
who you are logged in as.

What’s the mechanism the site is using to keep track of who you’re logged
in as?  What’s a better way to do this?

Note: if you’re all alone, you can do this with two different incognito
windows opening onto the same server.



	Check out ‘day24-ice’ as in #2.

In imageapp/templates/base.html, check out the two different ways
of including style sheets in your HTML – play around with uncommenting,
and looking at the effect on the output.  Do both work?  Which is
the “right” way to do this, and why?



	Check out cse491-textz:

git clone https://github.com/ctb/cse491-textz.git





and, using ‘git diff’, figure out at which commit we lost the white
rabbit.

Specifically, you can use ‘git log’ to see the commit history; ‘git
checkout <commit prefix>’ to check out specific versions of the
repo; ‘git diff <commit prefix1>..<commit prefix2>’ to diff between
two repos.  ‘git checkout master’ will get the tip of the master
branch back.

Note that the white rabbit is present in the initial git commit,
‘58f7df’:

cd cse491-textz
git checkout 58f7df
grep rabbit cities.txt





but absent in the tip:

git checkout master
grep rabbit cities.txt







	Check out cse491-textz as in #4; use ‘git blame’ to figure out at
what commit the name Defargo was introduced into the text.















          

      

      

    



    
         Copyright 2013, C. Titus Brown.
      Created using Sphinx 1.2.2.
    





      Edit this document!


      
        This file can be edited directly through the Web. Anyone can
        update and fix errors in this document with few clicks --
        no downloads needed.
      

      

        	
          Go to
        
          Day 24: Thursday, April 3, 2014
         on GitHub.
      


        	
        Edit files using GitHub's text editor in your web browser (see the 'Edit' tab on the top right of the file)
      


      	
        Fill in the Commit message text box at the bottom of the page describing why
        you made the changes. Press the Propose file change button next to it when done.
      


      	
        Then click Send a pull request.
      


      	
        Your changes are now queued for review under the project's Pull requests tab on GitHub!
      

      


      
        For an introduction to the documentation format please see the reST primer.
      


  
  
    
    
    Day 23: Tuesday, April 1, 2014
    
    

    











  
  

    
      Navigation

      
        	
          index

        	
          next |

        	
          previous |

        	MSU Web Dev 1.0 documentation 
 
      

    


    
      
          
            
  
  
Day 23: Tuesday, April 1, 2014


	Skim DevOps for recruiters [http://www.slideshare.net/devopsguys/dev-opsguys-devops-101-for-recruiters] and read this article [http://arstechnica.com/information-technology/2012/07/netflix-attacks-own-network-with-chaos-monkey-and-now-you-can-too/] and this article [http://techblog.netflix.com/2012/07/chaos-monkey-released-into-wild.html] on ChaosMonkey.



	Fill out the quiz [https://docs.google.com/a/msu.edu/forms/d/1_DiC1ECBtaYOpJ1UlVcayWVHaMWDKvY8VXYu9iHQvmo/viewform]



	Discussion.



	Introducing cookies, and “secure” cookies.

http://en.wikipedia.org/wiki/HTTP_cookie

See also ‘cookieapp’ in cse491-server.

Check out the day23 branch (see bottom of page), then go into
day23/ and run:

python ref-server.py -A cookie







	Introducing SQLite and SQL.

https://docs.python.org/2/library/sqlite3.html

http://sebastianraschka.com/Articles/sqlite3_database.html

http://software-carpentry.org/v4/databases/

See the sqlite/ subdirectory in cse491-server for some examples.
To run the examples, check out the day23 branch (as below), and
then go into day23/sqlite/, and run:

python create.py
python insert.py
python retrieve.py out.png





(Then verify that ‘out.png’ is a valid PNG file :)





Reminder, to look at the day23 serverz repo, put a copy in the directory
‘day23’ by doing::

git clone https://github.com/ctb/cse491-serverz.git day23 -b day23













          

      

      

    



    
         Copyright 2013, C. Titus Brown.
      Created using Sphinx 1.2.2.
    





      Edit this document!


      
        This file can be edited directly through the Web. Anyone can
        update and fix errors in this document with few clicks --
        no downloads needed.
      

      

        	
          Go to
        
          Day 23: Tuesday, April 1, 2014
         on GitHub.
      


        	
        Edit files using GitHub's text editor in your web browser (see the 'Edit' tab on the top right of the file)
      


      	
        Fill in the Commit message text box at the bottom of the page describing why
        you made the changes. Press the Propose file change button next to it when done.
      


      	
        Then click Send a pull request.
      


      	
        Your changes are now queued for review under the project's Pull requests tab on GitHub!
      

      


      
        For an introduction to the documentation format please see the reST primer.
      


  
  
    
    
    Homework 10
    
    

    











  
  

    
      Navigation

      
        	
          index

        	
          next |

        	
          previous |

        	MSU Web Dev 1.0 documentation 
 
      

    


    
      
          
            
  
  
Homework 10

Due by noon on Thursday, Apr 3rd.

Note: you will be asked to do 50 total points of projects for this class.


	Merge hw9 into your master.  Please don’t delete the ‘hw9’ branch.

Hand in this homework on branch ‘hw10’ on your github account, and
set up a pull request between hw10 and your master branch.  Don’t
merge it, just set up the PR.



	Pick 10 points worth of projects from Projects and implement.

Make sure to explain what you did in the ChangeLog, in detail.

As per the syllabus, you are allowed to work collaboratively but
everything you hand in must have your own name on the commits.  The
only exception to this is if you are working with someone else’s
project, but the sum of the project points must be N*5 (if you work
in a group with N=2 people, each person must implement 5 pts worth
of projects).  Note that you are also responsible for making sure
the other persons’ code doesn’t break your code.

If you run into technical difficulties that can’t be resolved, you
can ask (via e-mail) for an extension until the following Thursday.
In your e-mail write in a few sentences what problem you’re running
into, what you’ve tried in terms of debugging it, and what you think
the problem is.  If I grant you an extension I will find someone
to help you via code review/pull request on github.  Extensions
may not be granted, however, so make sure you’re really stuck before
asking for one...






After handing things in:

Do a clean checkout of your repo and make sure that all the tests pass
and that all your functionality works on the clean checkout, on arctic.

Using ChangeLog, please explain your project choice and implementation
in sufficient detail to let someone else (me) who is _not_ psychic
understand what you’ve done and run it.  Test your code and any
instructions using a clean checkout.  I mean it.











          

      

      

    



    
         Copyright 2013, C. Titus Brown.
      Created using Sphinx 1.2.2.
    





      Edit this document!


      
        This file can be edited directly through the Web. Anyone can
        update and fix errors in this document with few clicks --
        no downloads needed.
      

      

        	
          Go to
        
          Homework 10
         on GitHub.
      


        	
        Edit files using GitHub's text editor in your web browser (see the 'Edit' tab on the top right of the file)
      


      	
        Fill in the Commit message text box at the bottom of the page describing why
        you made the changes. Press the Propose file change button next to it when done.
      


      	
        Then click Send a pull request.
      


      	
        Your changes are now queued for review under the project's Pull requests tab on GitHub!
      

      


      
        For an introduction to the documentation format please see the reST primer.
      


  
  
    
    
    Day 22: Thursday, Mar 27th, 2014
    
    

    











  
  

    
      Navigation

      
        	
          index

        	
          next |

        	
          previous |

        	MSU Web Dev 1.0 documentation 
 
      

    


    
      
          
            
  
  
Day 22: Thursday, Mar 27th, 2014


	Read What’s the Open Web? [http://codinginparadise.org/weblog/2008/04/whats-open-web-and-why-is-it-important.html].

	Fill out quiz [https://docs.google.com/a/msu.edu/forms/d/1WaPQyXobGGd7D7ZQPpNC–6Uy1QVFu0lJkSyn6_DsOQ/viewform]

	Discussion.

	Discuss: Projects




	Code review offer.



	Future classes; strategy.

Tuesday classes will start with reading and quizes; then move on to
technology vignettes; then I will talk with people about their projects
and project benchmarks & goals.













          

      

      

    



    
         Copyright 2013, C. Titus Brown.
      Created using Sphinx 1.2.2.
    





      Edit this document!


      
        This file can be edited directly through the Web. Anyone can
        update and fix errors in this document with few clicks --
        no downloads needed.
      

      

        	
          Go to
        
          Day 22: Thursday, Mar 27th, 2014
         on GitHub.
      


        	
        Edit files using GitHub's text editor in your web browser (see the 'Edit' tab on the top right of the file)
      


      	
        Fill in the Commit message text box at the bottom of the page describing why
        you made the changes. Press the Propose file change button next to it when done.
      


      	
        Then click Send a pull request.
      


      	
        Your changes are now queued for review under the project's Pull requests tab on GitHub!
      

      


      
        For an introduction to the documentation format please see the reST primer.
      


  
  
    
    
    Day 21: Tuesday, Mar 25th, 2014
    
    

    











  
  

    
      Navigation

      
        	
          index

        	
          next |

        	
          previous |

        	MSU Web Dev 1.0 documentation 
 
      

    


    
      
          
            
  
  
Day 21: Tuesday, Mar 25th, 2014


	Read Scaling Twitter [http://highscalability.com/scaling-twitter-making-twitter-10000-percent-faster]



	Fill out quiz [https://docs.google.com/a/msu.edu/forms/d/14CeY0FzxosXZwyGTFguH_mHCGXRV8xxBw3d3gSMzE9Y/viewform].



	Discussion.



	Read through the image saving code in the day 21 branch [https://github.com/ctb/cse491-serverz/tree/day21] and understand what it does.  Talk amongst yourselves and discuss any problems this code might have for high traffic Web sites.  Fill out this form [https://docs.google.com/forms/d/1VHRGxP3QI6zDKMO2DB2t1vyagFApUyf7rGceWi-Ajww/viewform] when you’re done.

Note: You can also look at the difference between the day20 and day21 branches [https://github.com/ctb/cse491-serverz/compare/day20...day21?expand=1].

Reminder, to look at the day21 serverz repo, put a copy in the directory
‘day21’ by doing::

git clone https://github.com/ctb/cse491-serverz.git day21 -b day21





and then to run it:

cd day21/
python2.7 run-imageapp.py

















          

      

      

    



    
         Copyright 2013, C. Titus Brown.
      Created using Sphinx 1.2.2.
    





      Edit this document!


      
        This file can be edited directly through the Web. Anyone can
        update and fix errors in this document with few clicks --
        no downloads needed.
      

      

        	
          Go to
        
          Day 21: Tuesday, Mar 25th, 2014
         on GitHub.
      


        	
        Edit files using GitHub's text editor in your web browser (see the 'Edit' tab on the top right of the file)
      


      	
        Fill in the Commit message text box at the bottom of the page describing why
        you made the changes. Press the Propose file change button next to it when done.
      


      	
        Then click Send a pull request.
      


      	
        Your changes are now queued for review under the project's Pull requests tab on GitHub!
      

      


      
        For an introduction to the documentation format please see the reST primer.
      


  
  
    
    
    Homework 9
    
    

    











  
  

    
      Navigation

      
        	
          index

        	
          next |

        	
          previous |

        	MSU Web Dev 1.0 documentation 
 
      

    


    
      
          
            
  
  
Homework 9

Due by noon on Thursday, Mar 27th.


	Merge hw8 into your master.  Please don’t delete the ‘hw8’ branch.

Hand in this homework on branch ‘hw9’ on your github account, and
set up a pull request between hw9 and your master branch.  Don’t
merge it, just set up the PR.



	Integrate the quotes app into server.py, so that it can be run with
‘-A quotes’.  Instead of ‘/quotes-2.html’ have the default (‘/’)
be the page that displays the quotes.



	Integrate the chats app into server.py, so that it can be run with
‘-A chat’.  Amend the chats app so that the time of each message is
displayed in the chat window, too.



	Pick 5 points worth of projects from Projects and implement.

Make sure to explain what you did in the ChangeLog, in detail.

As per the syllabus, you are allowed to work collaboratively but
everything you hand in must have your own name on the commits.  The
only exception to this is if you are working with someone else’s
project, but the sum of the project points must be N*5 (if you work
in a group with N=2 people, each person must implement 5 pts worth
of projects).  Note that you are also responsible for making sure
the other persons’ code doesn’t break your code.






After handing things in:

Do a clean checkout of your repo and make sure that all the tests pass
and that all your functionality works on the clean checkout, on arctic.

Using ChangeLog, please explain your project choice and implementation
in sufficient detail to let someone else (me) who is _not_ psychic
understand what you’ve done and run it.  Test your code and any
instructions using a clean checkout.  I mean it.











          

      

      

    



    
         Copyright 2013, C. Titus Brown.
      Created using Sphinx 1.2.2.
    





      Edit this document!


      
        This file can be edited directly through the Web. Anyone can
        update and fix errors in this document with few clicks --
        no downloads needed.
      

      

        	
          Go to
        
          Homework 9
         on GitHub.
      


        	
        Edit files using GitHub's text editor in your web browser (see the 'Edit' tab on the top right of the file)
      


      	
        Fill in the Commit message text box at the bottom of the page describing why
        you made the changes. Press the Propose file change button next to it when done.
      


      	
        Then click Send a pull request.
      


      	
        Your changes are now queued for review under the project's Pull requests tab on GitHub!
      

      


      
        For an introduction to the documentation format please see the reST primer.
      


  
  
    
    
    Day 20: Thursday, Mar 20th, 2014
    
    

   