

 Navigation

 	
 index

 	
 next |

 	MSU Web Dev 1.0 documentation

Welcome to the Web Dev site (2013 version)

Lecture/lab: Tu/Th 2:40-4pm, McDonel Hall 2

Instructor: C. Titus Brown, ctb@msu.edu, BPS 2228(c)

TA: Cait Pickens, picken19@msu.edu

Office hours: 6-8pm Tuesdays, or by arrangement; in 2228 BPS.

Objectives:

In this course, you will learn how the Web works by writing a Web
server and some Web applications. More generally, we will discuss
concepts in client-server and peer-to-peer architectures and how all
of this technology works “under the hood” on today’s Internet. We’ll
also discuss issues and approaches to developing software with an eye
to maintainability, and learn about the practical separation of
concerns in Web application stacks, from browser through server.

Read more in the syllabus

Class resources and homework:

	Day 25 - Th, April 25, 2013
	Stuff I didn’t teach, couldn’t teach, or forgot to teach

	Cookies and logging in

	Security

	Scaling; latency; throughput

	What do real Web developers use?

	Day 24 - Tu, April 23, 2013

	Homework #6 - the last one!
	Honors option

	Day 23 - Th, April 18, 2013
	Questions/TODO

	SQL Multiple tables, and Transactions

	Minute Cards

	Day 22 - Tu, April 16, 2013
	Questions/TODO

	Minute Cards

	Homework #5

	Day 20 - Th, April 2, 2013
	TCP/IP Networking

	Templating with Jinja2, round 2

	Minute Cards

	Day 19 - Th, Mar 28th, 2013
	More about HTTP

	Using JSON-RPC in anger

	Templating with Jinja2

	Minute Cards

	Day 18 - Tu, Mar 26th, 2013
	Style sheets and HTML

	Minute Cards

	Day 17 - Th, Mar 21st, 2013

	Testing WSGI and Web apps, round 1

	Slightly more advanced magic
	Minute Cards

	Homework #4

	Day 16 - Tu, Mar 19th, 2013
	In class

	Minute Cards

	Day 15 - Tu, Mar 12th, 2013
	Answers to questions from Day 13 and Day 14

	In class

	Minute Cards

	Day 14 – Th, Feb 21st, 2013
	Pairs

	WSGI, Web servers, and extra features

	Next steps

	Minute Cards

	Day 13 – Tu, Feb 19th, 2013
	Web App Foundation

	Pairs

	WSGI

	Minute Cards

	Stories
	Story: Recipes, round 1

	Recipes

	Day 12 – Th, Feb 14th, 2013
	Classes and objects in Python

	Refactoring

	Basis HTML output and linking - discussion and exercise

	Homework 3 - readme

	Day 11 – Tu, Feb 12th, 2013
	Group work

	Work on the homework

	Minute Cards

	Day 10 – Th, Feb 7th, 2013
	Python data structures

	Homework #3

	Day 9 – Tu, Feb 5th, 2013
	Use case stories

	Minute Cards

	Homework #2

	Day 8 – Th, Jan 31, 2013
	Reviewing git and taking questions

	Some version control principles

	New functionality in drinkz

	Use cases!!!

	Day 7 – Tu, Jan 29, 2013
	Git - setting up

	Branches in git

	Fetching new branches

	In-class work

	When you’re done with that: write/brainstorm use cases

	Day 6 – Th, Jan 24, 2013
	Testing and code paths

	git: Resolving conflicts during merge

	Sharing branches with others

	Day 5 – Tu, Jan 22, 2013
	In-class Project: drinkz testing

	Homework #1

	Day 4 – Th, Jan 17, 2013
	Office hours

	Today!

	Day 3 – Tu, Jan 15, 2013
	Demo

	Exercise #1

	Exercise #2

	Useful websites
	git/SVN

Indices and tables

	Index

	Module Index

	Search Page

Please enable JavaScript to view the comments powered by Disqus.

comments powered by Disqus

 Copyright 2013, C. Titus Brown.
 Created using Sphinx 1.3.5.

 Edit this document!

 This file can be edited directly through the Web. Anyone can
 update and fix errors in this document with few clicks --
 no downloads needed.

 	
 Go to

 Welcome to the Web Dev site (2013 version)
 on GitHub.

 	
 Edit files using GitHub's text editor in your web browser (see the 'Edit' tab on the top right of the file)

 	
 Fill in the Commit message text box at the bottom of the page describing why
 you made the changes. Press the Propose file change button next to it when done.

 	
 Then click Send a pull request.

 	
 Your changes are now queued for review under the project's Pull requests tab on GitHub!

 For an introduction to the documentation format please see the reST primer.

 Day 25 - Th, April 25, 2013

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	MSU Web Dev 1.0 documentation

Day 25 - Th, April 25, 2013

Stuff I didn’t teach, couldn’t teach, or forgot to teach

Cookies and logging in

See https://github.com/ctb/cse491-webz/blob/cookies/app.py for code for
seting cookies.

Security

	As a Web developer, how do you protect against guessing?

Answer: by not being dumb.

	As a Web developer, how do you protect against eavesdropping?

Answer: HTTPS.

	As a Web developer, how do you protect against server compromise?

Answer: you try not to write insecure servers.

	How do you protect against client (browser-side) compromise?

Answer: you can’t.

Scaling; latency; throughput

How do you scale up to handle hundreds or thousands of concurrent sessions?

How do you minimize latency, the “turnaround time”?

How do you maximize throughput, the amount of “stuff” being delivered?

What do real Web developers use?

All of the tech we used in the class is “real”, including WSGI,
Jinja2, JSON and JSON-RPC, CSS, JQuery, SQLite, etc. But people have
built layers on top of WSGI and SQL (in particular) to automate as much
of the manual stuff as possible.

Real Python Web developers use things like Django [https://www.djangoproject.com/] and Pyramid [http://pyramid.readthedocs.org/en/latest/].

Personally, I have always had a soft spot for Quixote [http://quixote.ca/],
which is a nice, simple, extensible Web framework. To take a look,

source env491/bin/activate.csh
wget http://quixote.ca/releases/Quixote-2.7.tar.gz
pip install Quixote-2.7.tar.gz
tar xzf Quixote-2.7.tar.gz

cd Quixote-2.7
python quixote/server/simple_server.py --port=8000

See the files quixote/demo/root.ptl and quixote/demo/extras.ptl for the
source for the examples.

Please enable JavaScript to view the comments powered by Disqus.

comments powered by Disqus

 Copyright 2013, C. Titus Brown.
 Created using Sphinx 1.3.5.

 Edit this document!

 This file can be edited directly through the Web. Anyone can
 update and fix errors in this document with few clicks --
 no downloads needed.

 	
 Go to

 Day 25 - Th, April 25, 2013
 on GitHub.

 	
 Edit files using GitHub's text editor in your web browser (see the 'Edit' tab on the top right of the file)

 	
 Fill in the Commit message text box at the bottom of the page describing why
 you made the changes. Press the Propose file change button next to it when done.

 	
 Then click Send a pull request.

 	
 Your changes are now queued for review under the project's Pull requests tab on GitHub!

 For an introduction to the documentation format please see the reST primer.

 Day 24 - Tu, April 23, 2013

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	MSU Web Dev 1.0 documentation

Day 24 - Tu, April 23, 2013

Please go fill out this form [https://docs.google.com/forms/d/1q5DkaG4anwPa7Ras5-1jigBdpfxyvTTF3jKO2xkYTmM/viewform].

Please enable JavaScript to view the comments powered by Disqus.

comments powered by Disqus

 Copyright 2013, C. Titus Brown.
 Created using Sphinx 1.3.5.

 Edit this document!

 This file can be edited directly through the Web. Anyone can
 update and fix errors in this document with few clicks --
 no downloads needed.

 	
 Go to

 Day 24 - Tu, April 23, 2013
 on GitHub.

 	
 Edit files using GitHub's text editor in your web browser (see the 'Edit' tab on the top right of the file)

 	
 Fill in the Commit message text box at the bottom of the page describing why
 you made the changes. Press the Propose file change button next to it when done.

 	
 Then click Send a pull request.

 	
 Your changes are now queued for review under the project's Pull requests tab on GitHub!

 For an introduction to the documentation format please see the reST primer.

 Homework #6 - the last one!

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	MSU Web Dev 1.0 documentation

Homework #6 - the last one!

Due Wed, May 1st, at midnight. Office hours on Tuesday Apr 23rd, but
then I’m out of town on Apr 30th; arrange something with Cait if you
want help.

	See point 0 in Homework #5, but fill out this form [https://docs.google.com/forms/d/1Cpa6iyEo146y4vUESmqrM2gmMtzqKHwZE9B-A_ieeIw/viewform]
instead.

	Implement a WSGI server that speaks POST well enough to handle a JSON-RPC
request. Test it on your live Web app. (20/100)

	Implement your feature from HW #5.2. Give me documentation, somewhere,
on what it does and how – hey, maybe it can be on a Web page! (20/100)

	Change db.py to use SQLite to save/load everything. (20/100)

	Modify HW 4.2(c) with AJAX/JSON-RPC instead of an HTML form submit. (20/100)

	Implement logging in with cookies. (20/100)

Hand in by tagging as hw6.

Honors option

Complete 4 or more points below. (sum score >= 4.0)

	Install a NoSQL database and provide a branch on github where you
use that instead of SQLite for back-end storage. E-mail me the branch
info. (1 point)

	Get your code running on a public Web site (virtual machine/rented host).
E-mail me the URL and keep it running for 24 hours. (2 points)

	Get your tests and code running on ShiningPanda continuous integration.
E-mail me the URL for a public view of the passing tests. (2 points)

	Implement Selenium/SauceLabs testing of the AJAX feature (#6.4) above.
E-mail me a video. (3 points)

Please enable JavaScript to view the comments powered by Disqus.

comments powered by Disqus

 Copyright 2013, C. Titus Brown.
 Created using Sphinx 1.3.5.

 Edit this document!

 This file can be edited directly through the Web. Anyone can
 update and fix errors in this document with few clicks --
 no downloads needed.

 	
 Go to

 Homework #6 - the last one!
 on GitHub.

 	
 Edit files using GitHub's text editor in your web browser (see the 'Edit' tab on the top right of the file)

 	
 Fill in the Commit message text box at the bottom of the page describing why
 you made the changes. Press the Propose file change button next to it when done.

 	
 Then click Send a pull request.

 	
 Your changes are now queued for review under the project's Pull requests tab on GitHub!

 For an introduction to the documentation format please see the reST primer.

 Day 23 - Th, April 18, 2013

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	MSU Web Dev 1.0 documentation

Day 23 - Th, April 18, 2013

Schedule:

	Minute cards.

	AJAX and JSON-RPC

	More database: joins, transactions, multithreading, synch, etc.

Questions/TODO

(This is an example of using the jQuery JavaScript library [http://jquery.com/] with AJAX [https://en.wikipedia.org/wiki/Ajax_(programming)] and
JSON-RPC [http://en.wikipedia.org/wiki/JSON-RPC])

Grab the latest version of https://github.com/ctb/cse491-webz; for example,
on the CSE cluster, you could do:

mkdir day23
cd day23
python2.7 -m virtualenv env
source env/bin/activate.csh
pip install simplejson

to get the environment running, and then

git clone https://github.com/ctb/cse491-webz.git
cd cse491-webz
python app.py

Now, go to the URL of the Web server, and take a look at the
‘/content’ URL, which is loading from ‘somefile.html’. (You can look
at the source of ‘somefile.html’ on github [https://github.com/ctb/cse491-webz/blob/master/somefile.html], if you want.)

On the ‘/content’ page, you’ll see three input box regions

The value in the first is set dynamically by JavaScript using the jQuery
library.

The value in the second is output in an alert box upon change.

The two values in the third are summed and displayed on the page.

TODO:

	At your table, talk through the code for the first and second input
boxes. What’s going on? (One thing you can do to find out is edit
the HTML to remove the first <script>, which loads jQuery; this
will disable all the JavaScript.)

	For the third input box (“retrieve from server”), write down a
flowchart on your whiteboard that details, in order, what happens
in terms of network traffic and function calls in Python (on the
server side) and JavaScript (on the client side). Your flowchart
should include

	For the last text box (“retrieve from server”), why does an alert box
pop up after you enter the first value?

SQL Multiple tables, and Transactions

Tables [http://nbviewer.ipython.org/urls/raw.github.com/ged-lab/msu-cse491-2013/master/sqlite3-tables.ipynb].

Transactions [http://nbviewer.ipython.org/urls/raw.github.com/ged-lab/msu-cse491-2013/master/sqlite-transactions.ipynb].

Minute Cards

In the last 5 minutes of class, please fill out this minute card
survey [https://docs.google.com/spreadsheet/viewform?formkey=dHFMMmg5djBFMTFQV2paSlNtWG94X0E6MQ#gid=0].

Please enable JavaScript to view the comments powered by Disqus.

comments powered by Disqus

 Copyright 2013, C. Titus Brown.
 Created using Sphinx 1.3.5.

 Edit this document!

 This file can be edited directly through the Web. Anyone can
 update and fix errors in this document with few clicks --
 no downloads needed.

 	
 Go to

 Day 23 - Th, April 18, 2013
 on GitHub.

 	
 Edit files using GitHub's text editor in your web browser (see the 'Edit' tab on the top right of the file)

 	
 Fill in the Commit message text box at the bottom of the page describing why
 you made the changes. Press the Propose file change button next to it when done.

 	
 Then click Send a pull request.

 	
 Your changes are now queued for review under the project's Pull requests tab on GitHub!

 For an introduction to the documentation format please see the reST primer.

 Day 22 - Tu, April 16, 2013

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	MSU Web Dev 1.0 documentation

Day 22 - Tu, April 16, 2013

Schedule:

	Minute cards.

	Database foo; SQLite

Questions/TODO

Following the code in this sqlite IPython Notebook [http://nbviewer.ipython.org/urls/raw.github.com/ged-lab/msu-cse491-2013/master/sqlite.ipynb],

	As a group at each table, discuss where in your code (specific code
functionality) the database should be created, where the database
should be opened, where it should be accessed (read only) and where
the data in the database should be updated or modified.

Write down your answers for discussion.

	What would a database schema for your bottle types DB look like?
Write a small script on the CSE cluster (to call with python2.6)
that opens a new database and creates that schema.

	Write an INSERT statement to add a new bottle type. Be sure to use
‘?’ placeholders and variables. Add it to your script. Make sure
the INSERT statement actually adds to the table (by calling SELECT *
afterwards).

	Write a SELECT statement to handle the query in _check_bottle_type_exists
(in your drinkz/db.py). Add it to your script and print out the results
(c.fetchall()).

NOTE, you have to use python2.6 on the CSE cluster in order to use sqlite3.

Minute Cards

In the last 5 minutes of class, please fill out this minute card
survey [https://docs.google.com/spreadsheet/viewform?formkey=dHFMMmg5djBFMTFQV2paSlNtWG94X0E6MQ#gid=0].

Please enable JavaScript to view the comments powered by Disqus.

comments powered by Disqus

 Copyright 2013, C. Titus Brown.
 Created using Sphinx 1.3.5.

 Edit this document!

 This file can be edited directly through the Web. Anyone can
 update and fix errors in this document with few clicks --
 no downloads needed.

 	
 Go to

 Day 22 - Tu, April 16, 2013
 on GitHub.

 	
 Edit files using GitHub's text editor in your web browser (see the 'Edit' tab on the top right of the file)

 	
 Fill in the Commit message text box at the bottom of the page describing why
 you made the changes. Press the Propose file change button next to it when done.

 	
 Then click Send a pull request.

 	
 Your changes are now queued for review under the project's Pull requests tab on GitHub!

 For an introduction to the documentation format please see the reST primer.

 Homework #5

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	MSU Web Dev 1.0 documentation

Homework #5

Due Friday, Apr 12th at 5pm. Note, no class on Thursday; no office
hours on Tuesday. I’d suggest starting it BEFORE class on Tuesday so
that you can ask questions in class.

	To hand in your homework, tag the latest master as ‘hw5’ and fill
out this form [https://docs.google.com/forms/d/1wZfTmUMr43OmvbLWCiu1XzgA1Ot7C6foLOc22LMBtJk/viewform].
If I don’t see your code on github, I will not grade this homework
and you will get a 0. So, verify by going to github and finding
the tag and checking it, and then doing a clean clone and test run
of that specific tag. Ask for help if you have trouble doing this.
I mean it. I am serious. Don’t screw around. Double-check your
push. If you can’t find it on github, I probably can’t either.

	Finish implementing recipes [http://msu-web-dev.readthedocs.org/en/latest/story-recipes.html].
(40/100)

Specifically,

	Implement feature #3

	Implement bulk loading of recipes from the command line.

	Write HTML forms to enter liquor types, liquor inventories,
and recipes.

	Write JSON-RPC functions for the same.

	Write tests against everything but the HTML forms.

Describe how to bulk-load recipes in RECIPES.txt in your top-level
directory.

Use Jinja2 templating so that your functions use template rendering
to dynamically construct strings that are returned via the WSGI
server (10 of the 35).

	Write up a feature implementation. (20/100)

Look through the use cases here [http://msu-web-dev.readthedocs.org/en/latest/day9.html] and
here [http://msu-web-dev.readthedocs.org/en/latest/story-recipes.html]
and choose one to write up. You will be asked to implement this
(or another one) for HW #6.

Your feature should have –

	a data component

	an internal API for storing/retrieving/querying the relevant data

	a Web interface for display and modifying the relevant data

	a JSON-RPC set of functions

So, write up a paragraph or three as in the recipes use case [http://msu-web-dev.readthedocs.org/en/latest/story-recipes.html]
and put it in a text file called FEATURE.txt in the home directory
of your drinkz repository.

If you work collaboratively, please write up multiple stories (i.e.
you’re welcome to brainstorm, but if two people are brainstorming,
make up two features).

	If your last name starts with a letter whose ord in Python is odd,
do this (40/100):

Write an WSGI server that speaks HTTP well enough to receive a GET,
call a WSGI app (as in http://www.python.org/dev/peps/pep-0333/), and
return the status and HTML. Use only the ‘socket’ networking library;
you should be speaking low-level TCP/IP, nothing else.

A strong suggestion is to first write an HTTP server that returns
just a static string (see ‘get-page’ from HW 4), and then slowly
modify that to return the results of calling your WSGI app.

See server.py from Day 20 - Th, April 2, 2013 for basics of TCP/IP networking
and binding a socket.

Describe how to run your server in SERVER.txt.

	If your last name starts with a letter whose ord in Python is even,
do this (40/100):

Develop a simple WSGI app (e.g. see cse491-webz/app.py) that can be
attached to a WSGI server (as in
http://www.python.org/dev/peps/pep-0333/) and a set of client tests
that use the ‘socket’ library to connect to the WSGI server and
run the functions in the WSGI app, and test that you get back the
right thing from the server.

Your client & app should exercise:

	a straight up GET

	a form submission GET

	image retrieval

Describe how to run your client tests (they can be run using nose
if you want, or just as a separate script) in CLIENT.txt.

Hint:

>>> print ord('a')

Also, ask questions :)

Please enable JavaScript to view the comments powered by Disqus.

comments powered by Disqus

 Copyright 2013, C. Titus Brown.
 Created using Sphinx 1.3.5.

 Edit this document!

 This file can be edited directly through the Web. Anyone can
 update and fix errors in this document with few clicks --
 no downloads needed.

 	
 Go to

 Homework #5
 on GitHub.

 	
 Edit files using GitHub's text editor in your web browser (see the 'Edit' tab on the top right of the file)

 	
 Fill in the Commit message text box at the bottom of the page describing why
 you made the changes. Press the Propose file change button next to it when done.

 	
 Then click Send a pull request.

 	
 Your changes are now queued for review under the project's Pull requests tab on GitHub!

 For an introduction to the documentation format please see the reST primer.

 Day 20 - Th, April 2, 2013

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	MSU Web Dev 1.0 documentation

Day 20 - Th, April 2, 2013

Schedule:

	Moar discussion of HTTP

	Work on questions from Day 19 - Th, Mar 28th, 2013 and today.

	Minute cards.

Note: no class on Thursday.

TCP/IP Networking

You can use this for a reference –

http://www.tutorialspoint.com/python/python_networking.htm

Take a look at the stuff under network/ in the latest cse491-webz –

https://github.com/ctb/cse491-webz.git

This is a very simple client/server back-and-forth for TCP/IP.

Questions –

	How can one side of a connection know how much data remains to be
read from the other side of the connection?

	Run the server, connect to it with the client, and then use CTRL-C
to kill it. What signal does the client get?

	Modify the client to send a file to the server upon connection.
Make sure that both sides “clean up”, that is, exit properly.

Note:

data = open(filename).read()

to read bytes in from a file, and

fp = open(filename, 'w')
fp.write(data)
fp.close()

to save data to a file.

	Modify the server to send a file to the client as soon as the
client connects. Make sure that both sides “clean up”.

	Modify the client to send a file containing text that the server then

	uppercases

	replaces all As with ZZs

Note,

s = t.replace('A', 'ZZ')

will do the latter.

Templating with Jinja2, round 2

Look at the Jinja2 stuff from Day 19 - Th, Mar 28th, 2013, and grab the latest
cse491-webz. Try rendering ‘test4.html’ and ‘test5.html’; look at
templates/test4.html and templates/test5.html. What’s going on?

Things to try –

	modify ‘is_tuesday’ in render.py to be True. What happens in test4.html?

	What does the |e do (see {{ name|e }}) in test5.html? Try removing it,
and load stuff in a browser.

	Revisit test3.html. Do you understand what’s going on here?

Minute Cards

In the last 5 minutes of class, please fill out this minute card
survey [https://docs.google.com/spreadsheet/viewform?formkey=dHFMMmg5djBFMTFQV2paSlNtWG94X0E6MQ#gid=0].

Please enable JavaScript to view the comments powered by Disqus.

comments powered by Disqus

 Copyright 2013, C. Titus Brown.
 Created using Sphinx 1.3.5.

 Edit this document!

 This file can be edited directly through the Web. Anyone can
 update and fix errors in this document with few clicks --
 no downloads needed.

 	
 Go to

 Day 20 - Th, April 2, 2013
 on GitHub.

 	
 Edit files using GitHub's text editor in your web browser (see the 'Edit' tab on the top right of the file)

 	
 Fill in the Commit message text box at the bottom of the page describing why
 you made the changes. Press the Propose file change button next to it when done.

 	
 Then click Send a pull request.

 	
 Your changes are now queued for review under the project's Pull requests tab on GitHub!

 For an introduction to the documentation format please see the reST primer.

 Day 19 - Th, Mar 28th, 2013

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	MSU Web Dev 1.0 documentation

Day 19 - Th, Mar 28th, 2013

Schedule:

	Discussion of HTTP

	Ask homework-related questions & clarifications.

	Work on questions from Day 18 - Tu, Mar 26th, 2013 and today.

	Minute cards.

More about HTTP

Read this document [http://www.jmarshall.com/easy/http/] and connect
it to what I show you in class today & your ‘GET’ work. Ask questions!

Topics I’ll try to cover today:

	connecting to port 80 of ‘lyorn.idyll.org’ and ‘www.google.com’

	structure of HTTP requests and responses

	“metadata” other than received and submitted content

	URLs at google.com

Using JSON-RPC in anger

Take a look in the ‘twitter/’ subdirectory of

https://github.com/ctb/cse491-webz

These scripts turn an address INTO a geolocation (latitude &
longitude) using the Google Maps API, and turn a geolocation back into
an address (using the Twitter geolocation API, from v1 of the API [https://dev.twitter.com/docs/api/1]).

NOTE You’ll need to use ‘python2.6’ instead of ‘python’ or ‘python2.7’.
Sorry!

Your mission –

	Hook the scripts or code up so that you can take an address and see
what happens when you geolocate it via Google Maps and decode it
via Twitter.

	Look through the latest Twitter API (v1.1) [https://dev.twitter.com/docs/api/1.1] and work on gaining
authenticated access to the API for your own Twitter account.
Note, excessive googling for answers may be needed!

Bonus: sign up for a Twitter account if you don’t have one ;).

Templating with Jinja2

As you have probably already seen, there’s lots of repetition in your
various HTML files. This will get worse and worse as you add stylesheets,
JavaScript, etc. Plus, you run the very real risk of lots of duplicate
code, some of which will be right and some of which will be wrong.

The correct solution for this is templating. We’ll be using jinja2 [http://jinja.pocoo.org/docs/] templating, which is similar in
concept to many other templating systems.

The basic idea is that you have a template “source file” that you then
“render”, providing variables to fill in for whatever needs to be
customized for that page.

Trying it out

Grab the latest:

https://github.com/ctb/cse491-webz

Enable your virtualenv:

source env491/bin/activate.csh

And install jinja2:

pip install jinja2

Now, go into cse491-webz/jinja2/, and try running:

python render.py test.html

and

python render.py test2.html

and

python render.py test3.html

Look at the files in ‘templates/’. What’s going on here?

Minute Cards

In the last 5 minutes of class, please fill out this minute card
survey [https://docs.google.com/spreadsheet/viewform?formkey=dHFMMmg5djBFMTFQV2paSlNtWG94X0E6MQ#gid=0].

Please enable JavaScript to view the comments powered by Disqus.

comments powered by Disqus

 Copyright 2013, C. Titus Brown.
 Created using Sphinx 1.3.5.

 Edit this document!

 This file can be edited directly through the Web. Anyone can
 update and fix errors in this document with few clicks --
 no downloads needed.

 	
 Go to

 Day 19 - Th, Mar 28th, 2013
 on GitHub.

 	
 Edit files using GitHub's text editor in your web browser (see the 'Edit' tab on the top right of the file)

 	
 Fill in the Commit message text box at the bottom of the page describing why
 you made the changes. Press the Propose file change button next to it when done.

 	
 Then click Send a pull request.

 	
 Your changes are now queued for review under the project's Pull requests tab on GitHub!

 For an introduction to the documentation format please see the reST primer.

 Day 18 - Tu, Mar 26th, 2013

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	MSU Web Dev 1.0 documentation

Day 18 - Tu, Mar 26th, 2013

Schedule:

	Ask homework-related questions.

	Work on questions from Day 17 - Th, Mar 21st, 2013 and today.

	Minute cards.

Style sheets and HTML

Go to http://www.oswd.org/ and find a design you like; download it,
and unpack it (probably ‘unzip’ should work). Look at the index.html
file and reverse engineer the various style sheet and HTML
contributions to the pretty design.

Then, modify cse491-linkz (https://github.com/ctb/cse491-linkz/) to
output files that incorporate the styling of the OSWD design you
downloaded. Note the latest commit to cse491-linkz...

https://github.com/ctb/cse491-linkz/commit/f303f182016ae30d7b503645d8e709bf8a1e8362

Ask questions as you have them.

Minute Cards

In the last 5 minutes of class, please fill out this minute card
survey [https://docs.google.com/spreadsheet/viewform?formkey=dHFMMmg5djBFMTFQV2paSlNtWG94X0E6MQ#gid=0].

Please enable JavaScript to view the comments powered by Disqus.

comments powered by Disqus

 Copyright 2013, C. Titus Brown.
 Created using Sphinx 1.3.5.

 Edit this document!

 This file can be edited directly through the Web. Anyone can
 update and fix errors in this document with few clicks --
 no downloads needed.

 	
 Go to

 Day 18 - Tu, Mar 26th, 2013
 on GitHub.

 	
 Edit files using GitHub's text editor in your web browser (see the 'Edit' tab on the top right of the file)

 	
 Fill in the Commit message text box at the bottom of the page describing why
 you made the changes. Press the Propose file change button next to it when done.

 	
 Then click Send a pull request.

 	
 Your changes are now queued for review under the project's Pull requests tab on GitHub!

 For an introduction to the documentation format please see the reST primer.

 Day 17 - Th, Mar 21st, 2013

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	MSU Web Dev 1.0 documentation

Day 17 - Th, Mar 21st, 2013

Schedule:

	Read over Homework #4 and ask questions.

	Read answers to questions from Day 13 – Tu, Feb 19th, 2013 and Day 14 – Th, Feb 21st, 2013.

	Work on questions from Day 15 - Tu, Mar 12th, 2013, Day 16 - Tu, Mar 19th, 2013, and today.

	Minute cards.

Testing WSGI and Web apps, round 1

Update your cse491-webz branch with the latest master from
https://github.com/ctb/cse491-webz, and run the tests in
test_app using nose:

%% nosetests

Now go look at ‘test_app.py’ –

	What is the call order of functions to get down to the ‘index’
function in app.py in test_index()?

	What is the call order of functions to get down to the ‘recv’
function in app.py in test_recv()?

	Why is the ‘/form’ function not called in the tests at all?

	Try refactoring test_app.py so that common code in test_index and
test_form_recv is in one function that is then called in those two
test functions.

Slightly more advanced magic

Look at the ‘magic’ branch on https://github.com/ctb/cse491-webz, especially
the calls under __main__:

https://github.com/ctb/cse491-webz/blob/magic/json-rpc-client.py#L52

This is an attempt to clean up the equivalent calls from the main branch:

https://github.com/ctb/cse491-webz/blob/master/json-rpc-client.py#L30

How does this work??

More specifically,

	What is the chain of function calls that leads to and from ‘call_remote’
on the magic branch when you ask for ‘magic.hello()’ the first time?
And the second time?

	What does JSON_RPC_Magic do, and why is it separate from or different
from MagicFunction?

Minute Cards

In the last 5 minutes of class, please fill out this minute card
survey [https://docs.google.com/spreadsheet/viewform?formkey=dHFMMmg5djBFMTFQV2paSlNtWG94X0E6MQ#gid=0].

Please enable JavaScript to view the comments powered by Disqus.

comments powered by Disqus

 Copyright 2013, C. Titus Brown.
 Created using Sphinx 1.3.5.

 Edit this document!

 This file can be edited directly through the Web. Anyone can
 update and fix errors in this document with few clicks --
 no downloads needed.

 	
 Go to

 Day 17 - Th, Mar 21st, 2013
 on GitHub.

 	
 Edit files using GitHub's text editor in your web browser (see the 'Edit' tab on the top right of the file)

 	
 Fill in the Commit message text box at the bottom of the page describing why
 you made the changes. Press the Propose file change button next to it when done.

 	
 Then click Send a pull request.

 	
 Your changes are now queued for review under the project's Pull requests tab on GitHub!

 For an introduction to the documentation format please see the reST primer.

 Homework #4

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	MSU Web Dev 1.0 documentation

Homework #4

Due Mar 27th at 11:59pm. I’d suggest starting it BEFORE class on
Tuesday so that you can ask questions in class or at office hours.

(See Day 11 – Tu, Feb 12th, 2013 for collaboration instructions.)

	Cleanup. I won’t grade your homework if this isn’t the case.

	Merge with my master branch:

https://github.com/ctb/cse491-drinkz.git

such that ‘git pull https://github.com/ctb/cse491-drinkz.git
master’ says “up to date”, and make sure that your code includes
everything through the end of HW 3. This includes fixes for anything
that was graded as ‘broken’ at the end of HW 3.

	The default branch should be master, so,

https://github.com/<USERNAME/cse491-drinkz/blob/master/<filename>

should be what’s on the main page when you go to

https://github.com/<USERNAME>/cse491-drinkz

and when you do a ‘git clone’ of your repository, you should have
your latest code in default branch.

(See https://github.com/blog/421-pick-your-default-branch.)

	Refactor/fix. 10/100.

	Put your unit conversion code in one file, consolidated into a single
function. Your tests shouldn’t need to change.

	Make sure all your tests pass. This doesn’t mean “delete them”,
this means “fix your code.”

Done.

	Integrate a Web frontend to your drinkz code. 50/100.

Copy or merge or otherwise integrate ‘app.py’ from cse491-webz
(https://github.com/ctb/cse491-webz/blob/master/app.py) into the
‘drinkz/’ directory, and then –

	write a ‘bin/’ script called ‘run-web’ that starts up a Web
application as at the bottom of the current app.py.

	dynamically generate the Web pages from HW as part of ‘app.py’;
for example, ‘localhost:9786/’ should show an index page that
links to list of recipes, inventory, etc.

	provide another link on your index page that connects to a page
with a form on it that takes in some amount of liquid in a text
box, and, when ‘submit’ is clicked, goes to a new Web page that
shows the amount converted into ml. Make sure that there are links
back to the index page, too.

	create a new file ‘drinkz/test_app.py’ that exercises the WSGI
interface by

	initializing a clean database with some recipe data;

	create a new SimpleApp object;

	calls the __call_ function on the SimpleApp object
with an ‘environ’ dictionary and a ‘start_response’ function
of your own creation.

	runs the code to generate the page that lists the recipes.

	checks that the right recipe data is on that generated page.

	Save to/load from disk. 15/100.

Merge really trivial file saving/loading. More specifically,

	merge the code in
https://github.com/ctb/cse491-drinkz/tree/hw4-save-load into
your repo, alter the db.load_db and db.save_db functions to
save and load recipes as well, and make sure that you can
“properly” save and load bottle types, inventory, and recipes.

See bin/save-load for example usage/script creation.

	Create a script ‘bin/make-test-database’ that adds some data
(recipes, etc.) and then saves the database into a filename
provided on the command line.

	Modify make-html.py and app.py (from #2) to load that data in.

Note, it would be really nice if you made sure that you could
create a file with (b) that I could then load with (c), and if it
were really obvious what the filename should be. Hint. HINT.

	Simple CSS/JavaScript. 15/100. (You’ll need to get #2 working first.)

Integrate some really CSS and JavaScript into your HTML. Go check
out the latest commit to cse491-linkz [https://github.com/ctb/cse491-linkz/commit/f303f182016ae30d7b503645d8e709bf8a1e8362]
and then:

	Modify all your Web pages in #2 to contain the html, head, and body
regions, as well as a title. Make the title different on each page,
please.

	Modify all your Web pages in #2 to contain the <style> modification,
and put an <h1> title on each page (which should now be red).
The <h1> title should be different on each page.

	On your index page, add the button to show an alert box with JavaScript.
Make sure it works!

Note: if you have other obvious CSS and JavaScript on your pages,
e.g. because you’ve put together a style thing, you can skip this
part of the homework. Just make sure it’s obvious, m’kay?

	JSON-RPC. 15/100. (You’ll need to get #2 working first.)

	Change the JSON-RPC functionality in app.py to provide the following
functions:

convert_units_to_ml(amount) - given a str amount, returns ml
get_recipe_names() - returns a list of all recipe names
get_liquor_inventory() - returns a list of (mfg, liquor) tuples.

	Create a new file ‘drinkz/test_jsonrpc.py’ that tests these functions
through the ‘app’ interface. That is, you should have at least three
tests, each of which

	initializes a clean database with some data (if needed)

	creates a new SimpleApp object

	calls the __call__ function on the SimpleApp object with
an ‘environ’ dictionary and a ‘start_response’ function
of your own creation.

	‘environ’ should contain the information (PATH_INFO,
CONTENT_LENGTH, etc.) that makes the SimpleApp run the
relevant JSON-RPC accessible function (e.g. rpc_get_recipe_names).

	checks to make sure that the WSGI app returns the right answer.

Under no circumstances should you directly call anything other than
__call__ on the WSGI SimpleApp object, i.e. this should mimic closely
a “normal” call from the WSGI server into the app object.

Protip: use simplejson as in
https://github.com/ctb/cse491-webz/blob/master/json-rpc-client.py
and a StringIO object
(http://docs.python.org/2/library/stringio.html) to set up
environ[‘wsgi.input’] to pass in the JSON necessary to make the
call. You might also want to read
http://en.wikipedia.org/wiki/JSON-RPC.

	HTTP GET. 15/100. (You’ll need to get #2 working first.)

Write a standalone Python script that does an HTTP GET using the
‘socket’ library in Python. More specifically, read
http://effbot.org/zone/socket-intro.htm and then write a standalone
script called ‘grab-page’ (not in bin, or drinkz/, and not with a
.py on the end, and not with an underscore) in the root directory
of your repository. This script should take two command line
arguments, the hostname and the port for your running app.py
server, and print out the results of submitting a GET request for
‘/’ on the app.py server.

This might be worthwhile reading, too, if you’re confused or interested:

http://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol

	Hand in your homework by tagging it as tag ‘hw4’:

git tag hw4
git push origin hw4:hw4

I strongly suggest that you make sure you can clone your repo into
a new directory, check out ‘hw4’, and run all of your tests properly.
You might want to double-check that everything above works, too...

Note that it’s fairly easy to delete tags, so you should try this early
on and tell me if it doesn’t work; then you can delete the first hw4
tag and update it to whatever you want to hand in.

Please enable JavaScript to view the comments powered by Disqus.

comments powered by Disqus

 Copyright 2013, C. Titus Brown.
 Created using Sphinx 1.3.5.

 Edit this document!

 This file can be edited directly through the Web. Anyone can
 update and fix errors in this document with few clicks --
 no downloads needed.

 	
 Go to

 Homework #4
 on GitHub.

 	
 Edit files using GitHub's text editor in your web browser (see the 'Edit' tab on the top right of the file)

 	
 Fill in the Commit message text box at the bottom of the page describing why
 you made the changes. Press the Propose file change button next to it when done.

 	
 Then click Send a pull request.

 	
 Your changes are now queued for review under the project's Pull requests tab on GitHub!

 For an introduction to the documentation format please see the reST primer.

 Day 16 - Tu, Mar 19th, 2013

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	MSU Web Dev 1.0 documentation

Day 16 - Tu, Mar 19th, 2013

	Read answers to questions from Day 13 – Tu, Feb 19th, 2013 and Day 14 – Th, Feb 21st, 2013.

	Work on questions from Day 15 - Tu, Mar 12th, 2013 and today.

In class

Work on the in-class exercises from Day 15 - Tu, Mar 12th, 2013, or work on the following –

JSON-RPC

Set up your virtualenv and install simplejson:

%% source env491/bin/activate.csh
%% pip install simplejson

Next, update your existing cse491-webz directory, or clone a new one
(c.f. https://github.com/ctb/cse491-webz).

Open up two login windows to CSE.

In one, run ‘app.py’:

%% source ~/env491/bin/activate.csh
%% python app.py

In the other, run the ‘json-rpc-client.py’ file with the URL of your server:

%% python json-rpc-client.py http://arctic.cse.msu.edu:8231/

but replacing the last URL with your actual URL.

What is going on here??

Note, you can do this FROM anywhere to the CSE server... including your
laptop, if you install simplejson there.

Questions

	In the ‘dispatch’ machinery in app.py, why are the values also strings?
Couldn’t I just have used functions directly?

	Why does the start_response make a copy of html_headers, e.g. why ‘list()’?

start_response('200 OK', list(html_headers))

	What URL on the server is called for the ‘hello’ function?

	What server-side function is called when the JSON-RPC client asks
for ‘hello’? More generally, how does the JSON-RPC server-side
machinery know what function to call?

	What is the JSON format, and why do we need to use it?

Minute Cards

In the last 5 minutes of class, please fill out this minute card
survey [https://docs.google.com/spreadsheet/viewform?formkey=dHFMMmg5djBFMTFQV2paSlNtWG94X0E6MQ#gid=0].

Please enable JavaScript to view the comments powered by Disqus.

comments powered by Disqus

 Copyright 2013, C. Titus Brown.
 Created using Sphinx 1.3.5.

 Edit this document!

 This file can be edited directly through the Web. Anyone can
 update and fix errors in this document with few clicks --
 no downloads needed.

 	
 Go to

 Day 16 - Tu, Mar 19th, 2013
 on GitHub.

 	
 Edit files using GitHub's text editor in your web browser (see the 'Edit' tab on the top right of the file)

 	
 Fill in the Commit message text box at the bottom of the page describing why
 you made the changes. Press the Propose file change button next to it when done.

 	
 Then click Send a pull request.

 	
 Your changes are now queued for review under the project's Pull requests tab on GitHub!

 For an introduction to the documentation format please see the reST primer.

 Day 15 - Tu, Mar 12th, 2013

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	MSU Web Dev 1.0 documentation

Day 15 - Tu, Mar 12th, 2013

	Mini lecture

	Read answers to questions from Day 13 – Tu, Feb 19th, 2013 and Day 14 – Th, Feb 21st, 2013.

	Work on integrating webz, linkz,

Answers to questions from Day 13 and Day 14

Read through these questions and answers and make sure you grok both.
If you have specific questions to ask about any of this, stop by the
and ask ‘em.

Note, we’ll have a quizlet next Tuesday on WSGI and Web stuff to gauge
absorption of the material. PANIC.

From Day 13 – Tu, Feb 19th, 2013:

	How does your Web browser know how to contact your app.py instead
of your neighbor’s?

Answer: the hostname and port (http://hostname:port/) are unique
identifiers to your running application.

	Where is the logic in app.py for what is returned?

Answer: See app.py [https://github.com/ctb/cse491-webz/blob/master/app.py], ‘if
path == ‘ section. Here, ‘path’ is everything AFTER the hostname
and port, above.

	What role does content type play in what is returned?

Answer: the browser (on the receiving end, i.e. your computer) uses
content-type to decide how to interpret was is returned – HTML,
an image, etc.

	What variable type is ‘data’?

Answer: A string (potentially a binary string, but still a string).

	What role does ‘status’ play?

Answer: ‘status’ is essentially metadata ABOUT the connection,
and it helps the browser decide what to do with the data it receives.
For example, ‘200 OK’ means “everything is fine! no worries!”
while ‘403 Not Found’ means “whatever I’m giving you is basically
an error message.” There are redirects and other things, too.

	What happens if ‘somefile.html’ isn’t present?

Answer: An error! Because we don’t trap exceptions within the SimpleApp
class, the WSGI server catches them and returns a complaint.

	How does the Web browser know what is being returned?

Answer: See #3, above; ‘content-type’.

	Why do we generate a random number at the bottom of the script?

Answer: that’s the port. If you and another person try to bind the
same network port, only one of you will get it and the other person
will get an error. (Try it!)

	How is PATH_INFO generated, ultimately?

Answer: PATH_INFO is whatever’s on the URL line after the hostname
and port (and before any ? – more on that later)

	What happens when you ‘print’ something from within app.py?

Answer: It goes to the standard output of the process running app.py,
which (if you followed all my instructions above) is
arctic.cse.msu.edu.

	When does __call__ in app.py get executed?

Answer: when the WSGI server receives a request! Read more about
that here [http://www.python.org/dev/peps/pep-0333/] and in
days to come.

From Day 14 – Th, Feb 21st, 2013,

	How many Web requests are made to the server to load ‘/’?

Answer: two, technically, although you may see three (see
favicon.ico, below). First, a Web request to load the HTML,
and then a second one to load the image (‘’ tag).

Technically, only one “thing” is loaded at a time – one bundle
of content-type and data. Each additional bundle (different content
type or logical unit of content – think images, CSS, JavaScript, etc.)
requires an additional request.

	When you press ‘submit’ on the form page, what URL is received by the
server?

Answer: whatever is specified in the ‘action’ tag of the form.

	What does ‘formdata’ look like, and what does urlparse do to it?

Answer: it’s a string that looks like ‘key=value&key2=value2’, and it
encodes all of the data from the form. urlparse turns it into a
dictionary-like data structure.

	Why does the URL for ‘recv’ have a ‘/’ before it when the
form doesn’t specify a ‘/’?

Answer: the browser treats URLs like file paths, so if you are
at a form from URL ‘/some/place’, and submit to ‘process’, it
will automatically set the URL to ‘/some/process’. You can use
‘../’ and ‘./’ as you would on a file system.

	What is ‘favicon.ico’?

Answer: it’s a convention for the “site icon” – if the browser
can load a site’s /favicon.ico, then it uses the icon in the
tool bar.

	What determines that ‘index.html’ is served from the CSE Web server
for URLs ending in ‘/’?

Answer: as in ‘app.py’, whatever Web server is running determines that.
It’s a convention, not a requirement.

In class

Work on one of the following –

	Integrating ‘cse491-linkz’ and ‘cse491-webz’,

https://github.com/ctb/cse491-linkz
https://github.com/ctb/cse491-webz

so that your ‘webz’ is serving the files created by ‘linkz’.

	Integrate the dynamic content generation from ‘linkz’ – i.e., the
functions that produce HTML – into the ‘webz’ calls, so that instead
of the linkz code writing a file that webz serves, the webz code
calls a function that produces the HTML directly.

	Design some forms for cse491-drinkz functionality, including –

	Adding a bottle type

	Adding to inventory

	Adding a recipe

In the latter case, how could you design a form to add multiple
ingredients etc? Do you want to use pull down menus or select
ingredients from a menu? Think about what you would want to see
as a user.

Strong suggestion – write Python code to generate the HTML in
the forms. That way, if you want to get information from the db
module, you can do so when generating your repository. Plus,
extra abstraction is always good, right?

	Clean up your github repository. For example,

	Make sure that ‘master’ is the default branch when you clone your
repo.

	Make sure that your master branch contains everything up through HW 3.

	Eliminate any unneeded branches and tags (please leave HW 3 alone :)

	Eliminate and/or add to .gitignore any .pyc files

	Make sure your code is up to date with HW 3, if it’s already been
graded.

	Work on code cleanup. For example,

	Change unit conversion over to use dictionaries, and have only a
single function.

	Eliminate or fix messy or inaccurate comments.

Minute Cards

In the last 5 minutes of class, please fill out this minute card
survey [https://docs.google.com/spreadsheet/viewform?formkey=dHFMMmg5djBFMTFQV2paSlNtWG94X0E6MQ#gid=0].

Please enable JavaScript to view the comments powered by Disqus.

comments powered by Disqus

 Copyright 2013, C. Titus Brown.
 Created using Sphinx 1.3.5.

 Edit this document!

 This file can be edited directly through the Web. Anyone can
 update and fix errors in this document with few clicks --
 no downloads needed.

 	
 Go to

 Day 15 - Tu, Mar 12th, 2013
 on GitHub.

 	
 Edit files using GitHub's text editor in your web browser (see the 'Edit' tab on the top right of the file)

 	
 Fill in the Commit message text box at the bottom of the page describing why
 you made the changes. Press the Propose file change button next to it when done.

 	
 Then click Send a pull request.

 	
 Your changes are now queued for review under the project's Pull requests tab on GitHub!

 For an introduction to the documentation format please see the reST primer.

 Day 14 – Th, Feb 21st, 2013

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	MSU Web Dev 1.0 documentation

Day 14 – Th, Feb 21st, 2013

	Group in pairs

	Complete in-class exercise about WSGI

	Minute cards

Pairs

Please distribute yourself as on Tuesday into the Day 13 groups (see Day 13 – Tu, Feb 19th, 2013).

WSGI, Web servers, and extra features

Grab the latest additions to cse491-webz:

% cd cse491-webz
% git pull https://github.com/ctb/cse491-webz.git master

This may require resetting your repository first – if you want to just revert
to the last commit, do

% git checkout -f master

NOTE, this will eliminate any changes you have made. Make sure you want
to do that :)

Now run app.py, and play with the new features (image display and forms).
Then contemplate the following questions, in addition to the questions
from Day 13 (see Day 13 – Tu, Feb 19th, 2013):

	How many Web requests are made to the server in order to load the
main (/) page, and why?

	When you press ‘submit’ on the form page, what URL is received by the
server?

	What does ‘formdata’ look like, and what does urlparse do to it?

	If you look at the URL for ‘recv’, why does it have a ‘/’ before it when
the form doesn’t specify a ‘/’? Where does the ‘/’ come from?

	What is ‘favicon.ico’

	From earlier work, you know that ‘index.html’ is served from the CSE
Web server when http://www.cse.msu.edu/~username/ is requested. What
determines that?

Next steps

Please try to merge ‘cse491-linkz’ and ‘cse491-webz’ so that webz is
serving the static files that were produced by cse491-linkz.

Note that you can merge two DIFFERENT repositories with ‘git pull’, too...

Minute Cards

In the last 5 minutes of class, please fill out this minute card
survey [https://docs.google.com/spreadsheet/viewform?formkey=dHFMMmg5djBFMTFQV2paSlNtWG94X0E6MQ#gid=0].

Please enable JavaScript to view the comments powered by Disqus.

comments powered by Disqus

 Copyright 2013, C. Titus Brown.
 Created using Sphinx 1.3.5.

 Edit this document!

 This file can be edited directly through the Web. Anyone can
 update and fix errors in this document with few clicks --
 no downloads needed.

 	
 Go to

 Day 14 – Th, Feb 21st, 2013
 on GitHub.

 	
 Edit files using GitHub's text editor in your web browser (see the 'Edit' tab on the top right of the file)

 	
 Fill in the Commit message text box at the bottom of the page describing why
 you made the changes. Press the Propose file change button next to it when done.

 	
 Then click Send a pull request.

 	
 Your changes are now queued for review under the project's Pull requests tab on GitHub!

 For an introduction to the documentation format please see the reST primer.

 Day 13 – Tu, Feb 19th, 2013

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	MSU Web Dev 1.0 documentation

Day 13 – Tu, Feb 19th, 2013

Rough schedule for today, summary:

	Discuss the foundation for the drinkz web app

	Form new pairs

	Complete in-class exercise about confidence with topics covered in class

	Complete in-class exercise about WSGI

Web App Foundation

Thus far in class, we have laid a foundation for building a web
app. We start from text files, turn it into data, collect the data
into an in-memory database allow querying of the database, return
query results, and output everything as html files:

[image: _images/day13_1.png]
In order to develop the drinkz project, we need to expand on certain
levels of this foundation. Paths from here are:

	Outputting strings or serving files

	Converting the data structures to a SQL database

	Using web forms to get data or query the database

	Including some form of security/authentication

	Incorporating templating

[image: _images/day13_2.png]
As we add these functionalities to the drinkz framework, we will see a
web app emerge:

[image: _images/day13_3.png]

Pairs

Today’s in-class activities will have assigned groups:

	Group #
	
	

	1
	Eric M
	Michael M

	2
	Phil G
	Marco B

	3
	Mike M
	Mbozu L

	4
	Michelle T
	Anthony C

	5
	Jacob W
	Alex L

	6
	Jacob R
	Adam P

	7
	Jon B
	Ryan C

	8
	Ryan T
	Adam K

	9
	Michelle V
	Connor G

	10
	Nikhil A
	Wes W

	11
	Jesus R
	Austin H

	12
	Chris E
	Eric Z

	13
	Marshal N
	Anthony B

	14
	Jieping T
	David J

	15
	James C
	David W

	16
	Matt S
	Chris E

	17
	Hassan A
	Madalyn P

	18
	Yevgeny K
	Aaron V

	19
	Garrett S
	Connor G

	20
	Daniel S
	

Groups will meet at the following tables:

[image: _images/day13_4.png]

WSGI

We’re going to get started with a real, live Web server, built using
internal libraries from Python.

Running the Web server

Log into arctic.cse.msu.edu, and clone the cse491-webz repository from
github/ctb:

% git clone https://github.com/ctb/cse491-webz.git

This repo contains a simple Web server built using the wsgiref [http://docs.python.org/2/library/wsgiref.html] module, with a Web
application that follows the WSGI specification [http://www.python.org/dev/peps/pep-0333/]. Basically, wsgiref
handles all of the network stuff, while the WSGI application – here,
the ‘SimpleApp’ class in ‘app.py’ – follows the WSGI application spec
and serves up all the content. We’ll be writing both a WSGI app (the
drinkz stuff) and a WSGI server in this class.

To run the Web server, do:

% cd cse491-webz
% python2.7 app.py

and use your browser to go to the URL that is printed out.

Use CTRL-C to exit the app.py Web server.

In-class TODO

In pairs, please

	read through the app.py source code

	answer the below questions and be prepared to discuss them with ctb

	merge your cse491-linkz work (from Day 12 [http://msu-web-dev.readthedocs.org/en/latest/day12.html#basis-html-output-and-linking-discussion-and-exercise]) into the cse491-webz repository, and serve the cse491-linkz stuff via cse491-webz.

Questions:

	Stop the Web server, modify the HTML printed out next to the top
page in the Web server (‘Visit:’ ...), and re-run it. How does your
Web browser know how to contact your app.py instead of your neighbor’s?

	Note that the only content being returned to your Web browser is sent
from app.py. Where is the logic in app.py for what is returned, and
what is returned by default from this logic (i.e. if nothing specific
is matched, what’s the default?)

	What role does content type play in what is returned? What happens
if you return the “wrong” content-type?

	What variable type is ‘data’?

	What role does ‘status’ play? What if you return the “wrong” status?

	What happens if ‘somefile.html’ isn’t present?

	How does the Web browser know that ‘somefile.html’ is HTML, and
that the GIF file content is an image?

	Why do we generate a random number at the bottom of the script? What happens
if you make ‘port’ a fixed number?

	How is PATH_INFO generated, ultimately? (What do you have to change
in the Web browser to change PATH_INFO?)

	What happens when you ‘print’ something from within app.py – where does
it print out, and why?

	When does __call__ in app.py get executed, and how does the server
know when to execute it?

Minute Cards

In the last 5 minutes of class, please fill out this minute card
survey [https://docs.google.com/spreadsheet/viewform?formkey=dHFMMmg5djBFMTFQV2paSlNtWG94X0E6MQ#gid=0].

Please enable JavaScript to view the comments powered by Disqus.

comments powered by Disqus

 Copyright 2013, C. Titus Brown.
 Created using Sphinx 1.3.5.

 Edit this document!

 This file can be edited directly through the Web. Anyone can
 update and fix errors in this document with few clicks --
 no downloads needed.

 	
 Go to

 Day 13 – Tu, Feb 19th, 2013
 on GitHub.

 	
 Edit files using GitHub's text editor in your web browser (see the 'Edit' tab on the top right of the file)

 	
 Fill in the Commit message text box at the bottom of the page describing why
 you made the changes. Press the Propose file change button next to it when done.

 	
 Then click Send a pull request.

 	
 Your changes are now queued for review under the project's Pull requests tab on GitHub!

 For an introduction to the documentation format please see the reST primer.

 Stories

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	MSU Web Dev 1.0 documentation

Stories

Use cases

These documents are all written in reStructuredText; see a quickstart
primer [http://docutils.sourceforge.net/docs/user/rst/quickstart.html].

All stories:

	Story: Recipes, round 1
	Stories

	Features

	Data storage functionality

	More complex queries

Recipes

Premise: we want to support storing mixed-drink recipes and
integrating them with our inventory to figure out what we need to buy.

Story: Recipes, round 1

Please enable JavaScript to view the comments powered by Disqus.

comments powered by Disqus

 Copyright 2013, C. Titus Brown.
 Created using Sphinx 1.3.5.

 Edit this document!

 This file can be edited directly through the Web. Anyone can
 update and fix errors in this document with few clicks --
 no downloads needed.

 	
 Go to

 Stories
 on GitHub.

 	
 Edit files using GitHub's text editor in your web browser (see the 'Edit' tab on the top right of the file)

 	
 Fill in the Commit message text box at the bottom of the page describing why
 you made the changes. Press the Propose file change button next to it when done.

 	
 Then click Send a pull request.

 	
 Your changes are now queued for review under the project's Pull requests tab on GitHub!

 For an introduction to the documentation format please see the reST primer.

 Story: Recipes, round 1

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	MSU Web Dev 1.0 documentation

 	Stories

Story: Recipes, round 1

Summary:

We want to support storing mixed-drink recipes and integrating them
with our inventory to figure out what we need to buy to make a particular
mixed drink.

We also want to be able to ask, given an inventory, what drink recipes could
be made.

Group: Titus B., Cait P.

Stories

A. Timmy is hosting a party, and has several favorite recipes for
mixed drinks. He wants to know what he’s missing if he wants to make
a given number and type of mixed drinks, so that he can go buy it.

B. Suzy is hosting a party, and has several favorite recipes for mixed
drinks. She wants to know which mixed drinks (and how many of each)
she can make with the current contents of her liquor cabinet.

Features

	Store named recipes.

	Given a recipe, find out what we don’t have in inventory.

	Given an inventory and a list of recipes, find out which recipes we
can make.

Data storage functionality

Recipes will consist of lists of ingredients (liquor type, amount).
They will also have a free text name.

We will need to be able to add them individually.

We will need bulk input functionality, to load multiple recipes.

We will need to be able to retrieve recipes (name & ingredients) individually.

More complex queries

We will want to be able to get all recipes that can be made with a given
set of ingredients.

Please enable JavaScript to view the comments powered by Disqus.

comments powered by Disqus

 Copyright 2013, C. Titus Brown.
 Created using Sphinx 1.3.5.

 Edit this document!

 This file can be edited directly through the Web. Anyone can
 update and fix errors in this document with few clicks --
 no downloads needed.

 	
 Go to

 Story: Recipes, round 1
 on GitHub.

 	
 Edit files using GitHub's text editor in your web browser (see the 'Edit' tab on the top right of the file)

 	
 Fill in the Commit message text box at the bottom of the page describing why
 you made the changes. Press the Propose file change button next to it when done.

 	
 Then click Send a pull request.

 	
 Your changes are now queued for review under the project's Pull requests tab on GitHub!

 For an introduction to the documentation format please see the reST primer.

 Day 12 – Th, Feb 14th, 2013

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	MSU Web Dev 1.0 documentation

